Automata, Games & Verification

Summary #4

Today at 2:15pm in SR 016:

Seminar "Games, Synthesis, and Robotics" Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications

Complementation

Theorem 1. For each Büchi automaton A there exists a Büchi automaton A' such that $\mathcal{L}(A') = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

Muller Automata

Definition 1. A (nondeterministic) Muller automaton A over alphabet Σ is a tuple (S, I, T, F):

- S, I, T: defined as before
- $\mathcal{F} \subseteq 2^S$: set of accepting subsets, called the table.

Definition 2. A run r of a Muller automaton is accepting iff $In(r) \in F$

Theorem 2. For every (deterministic) Büchi automaton A, there is a (deterministic) Muller automaton A', such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Theorem 3. For every nondeterministic Muller automaton A there is a nondeterministic Büchi automaton A' such that $\mathcal{L}(A) = \mathcal{L}(A')$.