Bernd Finkbeiner Date: October 23, 2012

Automata, Games, and Verification: Lecture 1

o Course Organization

Vertiefungsvorlesung (6 CP)
www.react.uni-saarland.de/teaching/automata-games-verification-12/
Bernd Finkbeiner: E1.3/506, office hours Wednesdays 3-4

Felix Klein, Markus Rabe, Hazem Torfah

Tutorial: Thursdays 2-4pm, Room o10, building E1.7.
Exception: first tutorial on Wednesday Oct 31, 12-2pm, Room U12 building E1.1

Exams: End-of-term exam: February 14th, 2013, HS oo1 & 002, E1.3 1pm-3:30pm
End-of-semester exam: April 4th, 2013, HS oo1 & 002, E1.3

Your final grade will depend 100% on the final exam.

Every week, assignments will be given out and solutions presented the following week.
Credit points will be given to students who present correct solutions to problems during
the tutorial.

Each problem will be assigned in advance to a group of two members (single person groups
are allowed). If your group is assigned a problem in a particular week, please stop by for a
15 minute meeting to discuss your solution (time slots are indicated on the problem sheet)
and present your solution at the tutorial.

The solutions will not be graded. Problems will be distributed fairly (on a rotating scheme),
and participation (max 1 unexcused no-show) is required to write the final exam.

Challenge problems: not assigned to any group; take you out of the rotation once

Literature:

Erich Griddel et al: Automata, Logics, and Infinite Games (available online)
Khoussainov/Nerode: Automata Theory and its Applications

Lecture notes (online after lecture)

Summary slides (online after lecture)

1 Motivation and Overview

1.1 Reactive Systems
We distinguish

« Transformational programs

R — —
X y
» Reactive systems
E— —
D S
E— —

- nonterminating behavior

- interaction (program vs. environment)

Examples of reactive systems include controllers in embedded systems, operating systems,
communication protocols, and online applications. The semantics of such systems is usually
given as a graph called transition system, where the nodes are states and the edges transitions.
The nodes are labeled with sets of atomic propositions, i.e., basic facts that are true in a particular
state.

Definition 1 A transition system (AP, S, sy, >, L) consists of
o AP: atomic propositions

o S: finite set of states

sorry

reject close release
() g Q)

subr?)it revi(%w < <)
Or——O0——0——Q)

accept U close release

congrat

Figure 1: Transition system for “BusyChair”.

logics automata and games

linear-time properties LTL — S1S ¢-=------~ > word automata
CTL
branching-time properties N 1
CTL* — S2S ¢--------- » tree automata
ATL
alternating-time properties ATL* — SL ---------- » infinite games
l ames with
CL ==}~ N 8

incomplete information

Figure 2: Logics, automata, and games for reactive systems.

o 5o € S: initial state
o — C S x S: transition relation

o L:8 — 24P: labeling function

Example: Figure 1 shows the transition system of “BusyChair;” a simple online application for
the management of submissions to academic conferences. After an author submits a paper, the
programme committee discusses whether to accept or reject the submission and finally closes
the discussion and sends a message (congrats/sorry) to the authors. L

1.2 Properties and Logic

We specify the correctness of a reactive system using collections of properties that can be checked
individually. We will in particular focus on properties expressed in temporal logic. Temporal
logics and properties can be classified according to the linear/branching-time spectrum.

Example: Consider again the “BusyChair” application.

o “there is never both a sorry and congrat on the same computation path” is a linear-time
property
« “there is both a path with sorry and a path with congrat” is a branching-time property

« “authors cannot enforce congrat” is an alternating-time (or: game) property

We will consider various temporal logics along the linear/branching-time spectrum.

Linear-time temporal logic (LTL) describes sets of infinite sequences. A system is correct
if all the label sequences of the Kripke strucure are contained in this set.

Computation-tree logic (CTL/CTL*) describes sets of infinite trees. A system is correct if
the unrolling of the Kripke structure into a tree is an element of this set.

Alternating-time temporal logic (ATL/ATL*) describes objectives for coalitions of agents.
A system is correct if the coalition has a strategy to accomplish the objective.

Strategy logic (SL) relates multiple, existentially and universally quantified strategies. A
system is correct if the specified relation ship is true on the game arena defined by the
system.

Coordination logic (CL) extends CL with strategies under incomplete information, such
as the information visible at the interface of a component.

In addition to the temporal logics, we will study a few other logics, in particular the monadic
second-order logics.

Monadic second-order logic with one successor (S15) is the logical representation of infi-
nite words. Its expressiveness exceeds that of LTL.

Monadic second-order logic with two successors (S25) is the logical representation of (bi-
nary) trees. Its expressiveness exceeds that of CTL*.

Figure 2 gives an overview over the logics and their relative expressiveness.

1.3

Automata and Games

We will see that all these logics correspond to various types of automata and games.

Automata over infinite words (w-automata) recognize subsets of X%, the set of infinite
sequences over a given alphabet X.

Automata over infinite (binary) trees recognize subsets of {0,1}* — X, the set of infinite
binary trees labeled with letters from X.

Infinite games over finite graphs are two-player games where the plays are infinite paths
through a game arena given as a finite graph. Strategies in such games are mappings from
sequences of states (histories) to decisions.

Games over incomplete information limit the informedness of the players. Strategies in
such games are mappings from sequences of observations to decisions.

Figure 2 relates the automata and games to the logics.

1.4

Linear-time properties

A linear-time property is a subset of (247)«.

The set of natural numbers {0,1,2,3, ...} is denoted by w.
An alphabet X is a finite set of symbols.

An infinite word (or sequence, string) is a function from natural numbers to an alphabet:
a:w—>2Z

An infinite word is composed of its letters, so that in particular a = a(0)a(1)a(2)...
2%: set of infinite words over alphabet X.

An w-language L is a subset of 2.

2*: set of finite words over alphabet Z.

>*: set of finite non-empty words over alphabet X.

AP: set of atomic propositions

24P: subsets of AP. For p € AP,s € 24" wewrite s £ piff p es.

Linear-time temporal logic

Linear-time temporal logic (LTL) is a modal logic over infinite sequences [Pnueli 1977].

Syntax

Propositional logic

- acAP atomic proposition

- —pand g A ¥ negation and conjunction
Temporal operators

- Xo next state fulfills ¢
- oUy ¢ holds Until a y-state is reached

o Derived operators

- Fo=trueUg “some time in the future”

- Ggz=-F-g “from now on forever”

a arbitrary arbitrary arbitrary arbitrary

* @ OO

)
N

O

arbitrary

Xa O @ O -O—0O0—-

arbitrary arbitrary arbitrary

J
S

an _|b an an —|b b arbitrary

alb @ @ @ @ O

—-a —-a -a a arbitrary
Fa O O O @ O
a a a a

)
Q
®
Q-

* 0 0

Figure 3: Semantics of LTL

Semantics

An LTL formula ¢ over AP defines the linear-time property

L(p) = {a e (22")" ok <p},
where [is the smallest relation satisfying:
a iff aea(0) (ie,o(0)Ea)
opng, iff o=@ andoE @,
—~ ¢ iff oog
Xo iff o[l.]=0(1)a(2)c(3)...E¢
U@, iff 3j>0.0[j..]F ¢, and o[i..] E g forall0<i<j

Q
m T T T T

The semantics is illustrated in Figure 3.
Example:
o G(-reject)

« —~(Fsorry A F congrat)

o G(close — Xrelease)

The satisfaction of an LTL formula over a transition system is defined as follows:

o A path from a state s € S is an infinite sequence sys;s; ... € S such that sy = sand s; - s,
forall i > 0.

o The trace of a path syss; ... is an infinite sequence a,a;a, € (247)“ such that a; = L(s;)
foralli > 0.

o T E ¢: transition system 7 satisfies LTL formula ¢ iff Traces(T,sy) < L(¢),
where Traces(T, s): set of traces of paths from s in transition system 7.
1.5 Branching-time properties
Computation tree logic (CTL)

CTL is a modal logic over infinite trees [Clarke & Emerson 1981].

Syntax

o CTL state formulas.

- acAP atomic proposition
- -®and® A ¥ negation and conjunction
- Eg there exists a path fulfilling ¢
- Ao all paths fulfill ¢

o CTL path formulas.

- X0 the next state fulfills ®
- OUVY ® holds until a W-state is reached

Note that X and U alternate with A and E

Semantics

o CTL state formulas. Semantics defined by a relation k= such that s = @ ifand only if formula
® holds in state s.

sEa iff aelL(s)

sE-@ iff —(sE®)

SED AY iff (sE®) A (sEY)

seEg ift 7= ¢ for some path 7 that starts in s
seEAg ift 7= ¢ for all paths 7 that startin s

o CTL path formulas. Semantics defined by a relation such that = £ ¢ if and only if path
7 satisfies ¢.

TEXO iffn[l]F @
ne®UY iff (3j20.7[j]=¥Y A (VO<k<j n[k] = D))

where 71[i] denotes the state s; in the path 7

@)

o O
Y\ / O/}

Ced e Jeo e €0 C O O

EF red EGred E (yellow U red)

J/ A Al Pat

o O 0O O ©06. 606 0 o o0 0 0 O
AF red AGred A(YCHOWUI‘Gd)

Figure 4: Examples of CTL properties

The satisfaction of a CTL formula over a transition system is defined as follows: 7 = @ ift sy = ©.

Example:

o EF sorry A EF congrat
« Figure 4 shows a few more examples of CTL formulas and their semantics.

1.6 Game properties

Concurrent game structures

(1,2)
reject m 1,3) close release 0

S U (R M TR Q)=

o subr?)it revi(e)w <)
1L1) =~ (L) (\A CHRPNECD) =
20 O OD
accept (1.3) dose release congrat
(1,2) :

~
—
[\

N—

Definition 2 A concurrent game structure (k, AP, S, sy, d, 8, L) consists of

o k € N: number of players
o AP: atomic propositions
o S: finite set of states, s, € S: initial state

o d:{1,...,k} xS - N: number of moves available to player

¢« 0:Sx{L....,d()}x...x{1,...,d(k)} - S: transition function

o L:S — 24P: labeling function

Alternating temporal logic (ATL)
Syntax

o ATL state formulas:

- acAP atomic proposition
- -®andd A V¥ negation and conjunction
- ((A)e agents in A have strategy to enforce ¢

o ATL path formulas as for CTL.

Ac{l,...,k}isasetof players.

Semantics.

o A strategy for player a is a function f,: S* - N
such that f,(0 - q) < d.(q).

» Givenaset Fy = {f, | a € A} of strategies for a set of players A,
the outcomes Outcomes(F,, s) of F4 from state s are the paths sqs;s,
for all i > 0 there is a vector (ji, ..., jx) € Nf such that

- ja= fa(so...s;) for all players a € A, and
- 5(5i,j1, cee ,jk) =Sin

o s = ((A))g iff there exists a set of strategies F, for the players in A,
such that 7 = ¢ for all = € Outcomes(Fy, s).

Example:

o —(({1}))F congrat
o (({2}))F congrat A (({2}))F sorry

Comment: ATL subsumes CTL: A® = ((@))®, E®=(({L,...,k}))®

1.7 Verification and Synthesis

o Verification. “Does a given system satisfy a given property?”

...such thats, = sand

o Realizabilty/Synthesis. “Does there exist a system that satisfies a given property?”

