Automata, Games, and Verification: Lecture 15

20 Alternating-time Temporal Logic

Syntax

- ATL state formulas:
 - $-a \in AP$
 - $\neg \Phi$ and $\Phi \wedge \Psi$
 - $-\langle\langle A\rangle\rangle\varphi$

atomic proposition

negation and conjunction

agents in A have strategy to enforce φ

• ATL path formulas as for CTL.

 $A \subseteq \{1, \ldots, k\}$ is a set of players.

Semantics

Definition 1 A concurrent game structure $(k, AP, S, s_0, d, \delta, L)$ consists of

- $k \in \mathbb{N}$: number of players
- AP: atomic propositions
- S: finite set of states, $s_0 \in S$: initial state
- $d: \{1, ..., k\} \times S \rightarrow \mathbb{N}$: number of moves available to player
- $\delta: S \times \{1, ..., d(1)\} \times ... \times \{1, ..., d(k)\} \rightarrow S$: transition function
- $L: S \rightarrow 2^{AP}$: labeling function
- A *strategy* for player a is a function $f_a: S^+ \to \mathbb{N}$ such that $f_a(\sigma \cdot q) \le d_a(q)$.
- Given a set $F_A = \{f_a \mid a \in A\}$ of strategies for a set of players A, the *outcomes* $Outcomes(F_A, s)$ of F_A from state s are the paths $s_0s_1s_2...$ such that $s_0 = s$ and for all $i \ge 0$ there is a vector $(j_1, ..., j_k) \in \mathbb{N}^k$ such that
 - j_a = f_a (s_0 ... s_i) for all players a ∈ A, and
 - $-\delta(s_i,j_1,\ldots,j_k)=s_{i+1}$
- $s = \langle \langle A \rangle \rangle \varphi$ iff there exists a set of strategies F_A for the players in A, such that $\pi \models \varphi$ for all $\pi \in Outcomes(F_A, s)$.

Synthesis games

- Let $\mathcal{T} = (k, AP, S, s_0, d, \delta)$ be a concurrent game structure.
- Let $\langle \langle A \rangle \rangle \varphi$ be an ATL* formula where φ is an LTL formula.
- Let $\mathcal{A}_{\varphi} = (\Sigma, Q_{\varphi}, q_0, \delta_{\varphi}, c_{\varphi})$ be a complete deterministic parity automaton with $\mathcal{L}(\mathcal{A}_{\varphi}) = \mathcal{L}(\varphi)$.

The synthesis game $\mathcal{G}(\mathcal{T}, \varphi, A) = ((V_0, V_1, E), c)$:

- $V_0 = S \times Q_{\varphi}$
- $V_1 = S \times Q_{\varphi} \times \{j_a : \{1, \dots, d_a(s)\}\}_{a \in A}$
- $E = \{(s,q), (s,q,\{j_a\}_{a\in A})) \mid j_a \in \{1,\ldots,d_a(s)\}\}$ $\cup \{((s,q,\{j_a\}_{a\in A}), (s',q')) \mid q' = \delta_{\varphi}(q,L(s))$ and there is a vector $(j'_1,\ldots,j'_k) \in \mathbb{N}^k$ such that $j'_a = j_a$ for all players $a \in A$ and $\delta(s,j'_1,\ldots,j'_k) = s'\}$
- $c = c_{\varphi}(s)$ for $s \in S$ and o otherwise.

Example: Consider the following resource manager, where player o (the system) controls g (the grant) and player 1 (the environment) controls r (the request).

ATL* model checking

for all $i \le |\Phi|$ for all $\Psi \in Subformulas(\Phi)$ with $|\Psi| = i$ switch(Ψ):

> true : $Sat(\Psi) := S$; a : $Sat(\Psi) := \{q \in S \mid a \in L(q)\}$; $a_1 \wedge a_2$: $Sat(\Psi) := Sat(a_1) \cap Sat(a_2)$; $\neg a$: $Sat(\Psi) := S \setminus Sat(a)$; $\langle \langle A \rangle \rangle \varphi$: Sat is winning set in synthesis game

end switch

 $AP := AP \cup \{a_{\Psi}\}; \%$ introduce fresh atomic proposition replace Ψ with a_{Ψ} forall $q \in Sat(\Psi)$ do $L(q) := L(q) \cup \{a_{\Psi}\};$ od return $Sat(\Phi)$

21 Strategy Logic

Variables:

- x_1, x_2, \ldots : strategies of Player 1
- y_1, y_2, \ldots : strategies of Player 2

SL state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \Psi$$

SL path formulas:

$$\varphi \coloneqq \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid X\varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

SL strategy formulas:

$$\Gamma ::= \varphi(x,y) \mid \Gamma_1 \wedge \Gamma_2 \mid \neg \Gamma \mid \exists x.\Gamma \mid \exists y.\Gamma \mid \forall x.\Gamma \mid \forall y.\Gamma$$

where $a \in AP$, Φ is a state formula, φ , φ_1 and φ_2 are path formulas, and Ψ is a closed strategy formula.

A formula is closed if all strategy variables are quantified.

Embedding of ATL* in SL

• Every ATL* formula can be expressed in SL:

$$\langle\langle\{1\}\rangle\rangle Fp = \exists x. \forall y. (Fp)(x, y)$$

 $\langle\langle\{2\}\rangle\rangle Fp = \exists y. \forall x. (Fp)(x, y)$
 $\langle\langle\{1,2\}\rangle\rangle Fp = \exists x. \exists y. (Fp)(x, y)$

• Restricted strategies can be expressed in SL, but not in ATL*:

$$\exists x_1. \forall y_1. ((\forall x_2. \varphi(x_2, y_1)) \Rightarrow \psi(z_1, y_1))$$

22 Summary

Automata

- 1. *Branching Mode* deterministic nondeterministic universal alternating
- 2. Acceptance Mode Büchi – co-Büchi – parity – Streett – Rabin – Muller
- 3. *Input* words trees

Expressive Power

Word automata:

	Büchi	co-Büchi	parity	Muller
deterministic	_	-	+	+
nondeterministic	+	_	+	+
universal	_	+	+	+
alternating	+	+	+	+

Tree automata:

	Büchi	co-Büchi	parity	Muller
deterministic	_	_	_	_
nondeterministic	_	_	+	+
universal	_	_	+	+
alternating	_	_	+	+

Characterization Theorems

Definition 2 An ω -regular language is a finite union of ω -languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^*$ are regular languages.

Theorem 1 (Büchi's Characterization Theorem (1962)) *An \omega-language is* Büchi recognizable *iff it is* ω *-regular.*

Theorem 2 An ω -language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there is a regular language $W \subseteq \Sigma^*$ s.t. $L = \overrightarrow{W}$.

Theorem 3 A language \mathcal{L} is recognizable by a deterministic Muller automaton iff \mathcal{L} is a boolean combination of languages \overrightarrow{W} where $W \subseteq \Sigma^*$ is regular.

Translating Branching Modes

- McNaughton: nondeterministic Büchi word automaton → deterministic Muller
- Miyano and Hayashi: alternating Büchi word → nondeterministic Büchi
- not covered: Muller and Schupp *alternating Rabin tree* automaton → *nondeterministic Rabin tree* automaton

Translating Acceptance Modes

- Büchi, co-Büchi, parity → parity, Rabin, Streett (easy: special cases);
- Büchi, co-Büchi, Rabin, Streett, parity → *Muller* (easy but expensive);
- Muller → *parity*: latest appearence record.

Automata and Games

- 1. *Acceptance* game of nondeterministic/alternating *word/tree* automata,
- 2. *Emptiness* game of nondeterministic *word/tree* automata

Over 1-letter alphabet: emptiness game = acceptance game

Applications:

- language emptiness test
- complementation of alternating automata, tree automata

Determinacy

- 1. Reachability, Büchi, co-Büchi, parity games are memoryless determined.
- 2. Muller, Streett, Rabin games are *determined*, but not memoryless determined.

Corollary: memoryless runs suffice for alternating Büchi, co-Büchi, parity automata.

Logics

$$LTL \subseteq QPTL \approx S1S$$

$$CTL \subseteq CTL^* \subseteq S2S$$

Theorem 4 LTL, QPTL, S1S, CTL, CTL*, S2S are decidable logics.

Formula satisfiable? → translate formula to automaton → check emptiness.

CTL model checking

Does a given transition system M satisfy an CTL formula Φ ?

CTL formula Φ alternating Büchi tree automaton \mathcal{A}_{φ} Emptiness game for M and \mathcal{A}'_{φ} Player o wins: $M \models \varphi$ Player 1 wins: $M \not\models \varphi$

LTL model checking

Does a given transition system M satisfy an LTL formula φ ?

LTL formula φ universal co-Büchi word automaton \mathcal{A}_{φ} construct via

nondeterministic Büchi automaton for $\neg \varphi$ Universal tree automaton \mathcal{A}'_{φ} Emptiness game for M and \mathcal{A}'_{φ} Player 0 wins: $M \vDash \varphi$ Player 1 wins: $M \not\models \varphi$

Alternative view on LTL model checking

