Automata, Games, and Verification: Lecture 8

Definition 1 For a S1S formula φ , $\mathcal{L}(\varphi) = \{\alpha_{\sigma_1,\sigma_2} \in (2^{V_1 \cup V_2})^{\omega} \mid \sigma_1, \sigma_2 \vDash \varphi\}$, where $x \in \alpha(j)$ iff $j = \sigma_1(x)$, and $X \in \alpha(j)$ iff $j \in \sigma_2(X)$.

Definition 2 A language L is LTL/QPTL/S1S-definable if there is a LTL/QPTL/S1S formula φ with $\mathcal{L}(\varphi) = L$.

Theorem 1 Every QPTL-definable language is S1S-definable.

Proof:

For every QPTL-formula φ over AP and every S1S-term t over $V_1 = \emptyset$, we define a S1S formula $T(\varphi, t)$ over $V_2 = AP$ such that, for all $\alpha \in (2^{AP})^{\omega}$,

$$\alpha[[t]_{\sigma_1}..] \vDash_{\text{OPTL}} \varphi$$
 iff $\sigma_1, \sigma_2 \vDash_{\text{S1S}} T(\varphi, t),$

where $\sigma_2: P \mapsto \{i \in \omega \mid P \in \alpha(i)\}.$

- $T(P, t) = t \in P$, for $P \in AP$;
- $T(\neg \varphi, t) = \neg T(\varphi, t)$;
- $T(\varphi \lor \psi, t) = T(\varphi, t) \lor T(\psi, t)$
- $T(X\varphi, t) = T(\varphi, S(t))$
- $T(\varphi \mathcal{U} \psi, t) = \exists y. (y \ge t \land T(\psi, y) \land \neg \exists z. (t \le z < y \land T(\neg \varphi, z)))$
- $T(\exists P \varphi, t) = \exists P. T(\varphi, t).$

$$\mathcal{L}(\varphi) = \mathcal{L}(T(\varphi,0)).$$

Theorem 2 *Every S1S-definable language is Büchi-recognizable.*

Proof:

Let φ be a S₁S-formula.

1. Rewrite φ into normal form

$$\varphi ::= 0 \in X \mid x \in Y \mid x = 0 \mid x = y \mid x = S(y) \mid$$

$$\neg \varphi \mid \varphi \lor \psi \mid \exists x. \ \varphi \mid \exists X. \ \varphi.$$
using the following requires rules:

using the following rewrite rules:

$$S(t) \in X \quad \mapsto \quad \exists y. \ y = S(t) \land y \in X$$

$$S(t) = S(t') \quad \mapsto \quad t = t'$$

$$S(t) = x \quad \mapsto \quad x = S(t)$$

$$t = S(S(t')) \quad \mapsto \quad \exists y. \ y = S(t') \land t = S(y)$$

2. Rename bound variables to obtain unique variables.

Example:

$$\exists x.(S(S(y)) = x \land \exists x (S(x) \in X_0))$$

is rewritten to

$$\exists x_0. \ \exists x_1.x_0 = S(x_1) \land x_1 = S(y) \land \exists x_2 \exists x_3.x_3 = S(x_2) \land x_3 \in X_0$$

3. Construct Büchi automaton:

Base cases:

0 ∈ *X*:

For every $x \in V_1$, intersect with A_x :

$$\{A \mid x \notin A\} \qquad \qquad \{A \mid x \in A\} \qquad \qquad \{A \mid x \notin A\}$$

• $x \in Y$:

$$\{A \mid x \notin A\} \qquad \{A \mid x \notin A\}$$

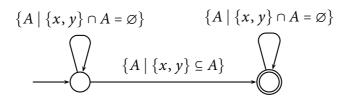
$$\{A \mid \{x, Y\} \subseteq A\}$$

• x = 0:

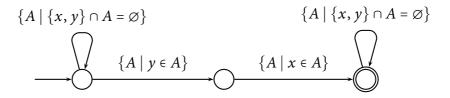
$$\{A \mid x \notin A\}$$

$$\{A \mid x \in A\}$$

• x = y:



• x = S(y):



Inductive step:

- $\varphi \lor \psi$: language union,
- $\neg \varphi$: complement and intersection with all A_x ,
- $\exists x. \varphi$, $\exists X. \varphi$: projection

10 Weak Monadic Second-Order Theory of One Successor (WS1S)

Syntax: same as S1S;

Semantics: same as S₁S; except:

 $\sigma_1, \sigma_2 \vDash \exists X. \varphi \text{ iff there is a finite } A \subseteq \omega \text{ s.t.}$

$$\sigma_2'(Y) = \begin{cases} \sigma_2(Y) \text{ if } Y \neq X \\ A \text{ otherwise} \end{cases}$$

and $\sigma_1, \sigma_2' \vDash \varphi$.

Theorem 3 A language is WS1S-definable iff it is S1S-definable.

Proof:

 (\Rightarrow) : Quantifier relativization:

$$\forall X \dots \mapsto \forall X. \operatorname{Fin}(X) \to \dots$$

 $\exists X \dots \mapsto \exists X. \operatorname{Fin}(X) \wedge \dots$

(⇐):

- Let φ be an S₁S-formula.
- Let \mathcal{A} be a Büchi automaton with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.
- Let \mathcal{A}' be a deterministic Muller automaton with $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$.
- By the characterization of deterministic Muller languages, $\mathcal{L}(\mathcal{A}')$ is a boolean combination of languages \overrightarrow{W} , where W is finite-word recognizable.
- For a finite-word language W, recognizable by a finite automaton $\mathcal{A} = (S, I, T, F)$, where $S = \{s_1, s_2, \dots, s_n\}$, we define a WS1S formula $\psi_W(y)$ over $V_2 = AP \cup \{At_{s_1}, \dots, At_{s_n}\}$ that defines the words whose prefix up to position y is in W:

$$\psi_{W}(y) := \exists At_{s_{1}}, \dots, At_{s_{n}}.$$

$$\bigvee_{s \in I} 0 \in At_{s}$$

$$\wedge \forall x < y \left(\bigvee_{(s_{i}, A, s_{j}) \in T} \left(x \in At_{s_{i}} \wedge S(x) \in At_{s_{j}} \wedge \bigwedge_{P \in A} x \notin P \wedge \bigwedge_{P \in AP \setminus A} x \notin P \right) \right)$$

$$\wedge \forall x \leq y \left(\bigwedge_{i \neq j} \neg \left(x \in At_{s_{i}} \wedge x \in At_{s_{j}} \right) \right)$$

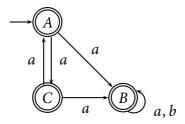
$$\wedge \bigvee_{s_{i} \in F} y \in At_{s_{i}}$$

- then, the WS1S formula $\varphi_W := \forall x. \exists y. (x < y \land \psi(y))$ defines the words in \overrightarrow{W} .
- Hence, $\mathcal{L}(\varphi)$ is WS1S-definable.

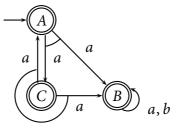
11 Alternating Automata

Example:

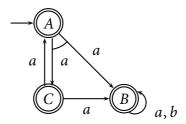
• Nondeterministic automaton, $L = a(a + b)^{\omega}$, disjunctive branching mode:



• universal automaton, $L = a^{\omega}$, conjunctive branching mode:



• Alternating automaton, both branching modes (arc between edges indicates universal branching mode), $L = aa(a + b)^{\omega}$



Definition 3 *The* positive Boolean formulas over a set X, denoted $\mathbb{B}^+(X)$, are the formulas built from elements of X, conjunction \wedge , disjunction \vee , true and false.

Definition 4 A set $Y \subseteq X$ satisfies a formula $\varphi \in B^+(X)$, denoted $Y \models \varphi$, iff the truth assignment that assigns true to the members of Y and false to the members of $X \setminus Y$ satisfies φ .

Definition 5 An alternating Büchi automaton is a tuple $A = (S, s_0, \delta, F)$, where:

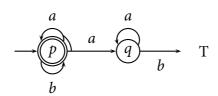
- *S* is a finite set of states,
- $s_0 \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \to \mathbb{B}^+(S)$ is the transition function.

A tree T over a set of *directions* D is a prefix-closed subset of D^* . The empty sequence ε is called the *root*. The children of a node $n \in T$ are the nodes children $(n) = \{n \cdot d \in T \mid d \in D\}$. A Σ -labeled tree is a pair (T, l), where $l : T \to \Sigma$ is the labeling function.

Definition 6 A run of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an S-labeled tree $\langle T, r \rangle$ with the following properties:

- $r(\varepsilon) = s_0$ and
- for all $n \in T$, if r(n) = s, then $\{r(n') \mid n' \in children(n)\}$ satisfies $\delta(s, \alpha(|n|))$.

Example: $L = (\{a, b\}^* b)^{\omega}$



$$S = \{p, q\}$$

$$F = \{p\}$$

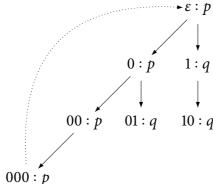
$$\delta(p, a) = p \land q$$

$$\delta(p, b) = p$$

$$\delta(q, a) = q$$

$$\delta(q, b) = T$$

example word $w = (aab)^{\omega}$ produces this run:



(The dotted line means that the same tree would repeat there. Note that, in general, an alternating automaton may also have more than one run on a particular word—or no run at all.)

Definition 7 A branch of a tree T is a maximal sequence of words $n_0 n_1 n_2 \dots$ such that $n_0 = \varepsilon$ and n_{i+1} is a child of n_i for $i \ge 0$.

Definition 8 A run (T, r) is accepting iff, for every infinite branch $n_0 n_1 n_2 \dots$

$$In(r(n_0)r(n_1)r(n_2)...)\cap F\neq\emptyset.$$