
Automata, Games,
and Verification
Prof. Bernd Finkbeiner, Ph.D.
Saarland University
Summer Term 2015

Lecture Notes by
Bernd Finkbeiner, Felix Klein, Tobias Salzmann

These lecture notes are a working document and may contain errors. The current version of this doc-
ument is available at: www.react.uni-saarland.de/teaching. Please report any bugs, comments
and ideas for improvement to agvscript@react.uni-saarland.de.

Contents
1 Introduction 1

1.1 Model Checking . 1
1.2 Synthesis . 2
1.3 The Logic-Automata Connection . 3

2 Büchi Automata 5
2.1 Preliminaries . 5
2.2 Automata over Infinite Words . 5
2.3 The Büchi Acceptance Condition . 6

3 Büchi’s Characterization Theorem 9
3.1 Kleene’s Theorem . 9
3.2 ω-Regular Languages . 10
3.3 Closure Properties of the Büchi-Recognizable Languages 10
3.4 Büchi’s Characterization Theorem . 13

4 Deterministic Büchi Automata 15

5 Complementation of Büchi Automata 19

6 McNaughton’s Theorem 25
6.1 The Muller Acceptance Condition . 25
6.2 From Nondeterministic to Semi-Deterministic Automata 28
6.3 From Semi-Deterministic Büchi to Deterministic Muller 30
6.4 Safra’s Construction . 31

7 Logics over Infinite Sequences 35
7.1 Linear-time Temporal Logic (LTL) . 35
7.2 Quantified Propositional Temporal Logic (QPTL) 37
7.3 Monadic Second-Order Logic of One Successor (S1S) 38
7.4 Weak Monadic Second-Order Logic of One Successor (WS1S) 41

8 Alternating Büchi Automata 43
8.1 Alternating Automata . 43
8.2 From LTL to Alternating Automata . 44
8.3 Translating Alternating to Nondeterministic Automata 45

9 Infinite Games 49
9.1 Basic Definitions . 49
9.2 Reachability Games . 50
9.3 Büchi Games . 53
9.4 Parity Games . 55

10 Rabin’s Theorem 57
10.1 Tree Automata . 57
10.2 Complementation of Parity Tree Automata 60
10.3 Monadic Second-Order Logic of Two Successors (S2S) 61

11 Computation Tree Logic 65
11.1 CTL . 65
11.2 Alternating Tree Automata . 65
11.3 From CTL to Alternating Tree Automata . 67

3

12 Summary 69
12.1 Automata . 69
12.2 Characterization Theorems . 70
12.3 Translating Branching Modes . 70
12.4 Translating Acceptance Conditions . 70
12.5 Automata and Games . 70
12.6 Determinacy . 71
12.7 Logics . 71
12.8 Model Checking and Synthesis . 71

1 Introduction
The theory of automata over infinite objects provides a succinct, expressive and formal
framework for reasoning about reactive systems, such as communication protocols and con-
trol systems. Reactive systems are characterized by their nonterminating behaviour and
persistent interaction with their environment. In this course we study the main ingredients
of this elegant theory, and its application to automatic verification (model checking) and
program synthesis.

1.1 Model Checking
In model checking, we check automatically and exhaustively whether a given system model
meets its specification. Typical examples for specifications are the accessibility and mutual
exclusion properties of certain critical regions. Automata over infinite objects are used both
to represent the system and to represent the specification. The verification problem can
be solved by constructing the intersection of the system automaton with an automaton for
the negation of the specification, and then checking whether the language of the resulting
automaton is empty.

Example 1.1. Mutual execution with program turn

local t: boolean where initially t = 0

P0 ::


loop forever do 00 : await t = 0;

01 : critical;
10 : t := 1;


 || P1 ::


loop forever do 00 : await t = 1;

01 : critical;
10 : t := 0;




Program turn is a (very) simple solution to the mutual exclusion problem: it ensures that,
at any given point of time, at most one process is in the critical region. The following is a
representation of the behavior of turn as an automaton:

s0 s1 s2 s3

s4s5s6

00000 01000 10000

00001

0001100101

00000

The alphabet of the automaton consists of bitvectors of length 5, where the first two bits
represent the location of process P0, the next two bits the location of process P1, and the
final bit the value of t. The automaton is a safety automaton (more about this later), it
accepts all infinite repetitions of the sequence 00000 01000 10000 00001 00011 00101.

In order to verify that turn satisfies the mutual exclusion property (P0 and P1 are
never in location 01 at the same time), we build an automaton that represents the negation
(eventually P0 and P1 are simultaneously in location 01):

t0 t1

∗

01010, 01011

∗

1

This automaton is a Büchi automaton with accepting state t1. A word is accepted if t1 is
visited infinitely often (more about this later). It is easy to see that for every word accepted
by the system automaton, the property automaton stays in t0 forever and therefore does not
accept the word. This means that there does not exist an infinite sequence of bitvectors that
is both generated by the program and accepted by the automaton representing the negation
of the specification. In other words, turn is correct.

1.2 Synthesis
In synthesis, we check automatically if there exists a program that satisfies a given spec-
ification. If the answer is yes, we also construct such a program. The synthesis problem
can be solved by determining the winner of a two-player game between a system player and
an environment player. The system player wins a play if the specification is satisfied. A
winning strategy for the system player can be translated into a program that is guaranteed
to satisfy the specification.

Example 1.2. Mutual execution by arbitration

local t0, t1: boolean where initially t0 = t1 = 0

P0 ::

 loop forever do[
0 : await t0 = 1
1 : critical;

]  || P1 ::

 loop forever do[
0 : await t1 = 1
1 : critical;

]  || Arbiter:: ?

In this example, the implementation of the arbiter process is left open. We wish to find an
implementation that guarantees certain desirable properties such as mutual exclusion. We
build a game arena where, in each round, first the system player fixes the output t1 and t2
of the arbiter process and then the environment player makes a move in processes P0 or P1,
resolving any nondeterminism, such as whether P0 or P1 enters the critical section if both
are in location 0 and both t0 and t1 have been set to 1 by the arbiter.

00

0010
0000

0011
0001

1001

1010 1000100110110110 011101010100

11

1110 110011011111

We depict states in which the system player gets to chose the next move with circles, and
states in which the environment player gets to chose the next move with rectangles. The

2

states of the system player consist here of all possible combinations of locations of processes
P0 and P1, i.e., bitvectors of length 2, where the first bit indicates the location of P0, and the
second bit indicates the location of P1. The states of the environment player are bitvectors
of length 4, where the additional third and forth bit represent the values of t0 and t1,
respectively, that were chosen by the system player in the previous move.

Suppose now that our specification consists again of the mutual exclusion property, i.e.,
we wish to ensure that state 11 is never visited. Our game is now a safety game, which
consists of a game arena and a set of safe states (more about this later). Here, the safe
states are all states except 11. The system player wins all plays in which the game stays in
the safe states forever. Note that the system player has a very simple strategy to win any
game that starts in state 00: simply choose the move to state 0000, i.e., block both processes.
This arbiter is indeed correct, at least with respect to the mutual exclusion property!

More comprehensive specifications lead to more interesting winning strategies and more
useful synthesized programs. We might, for example, require that every process visits its
critical section infinitely often, i.e., the play must visit states 10 or 11 infinitely often, and
also states 01 or 11 infinitely often. A winning strategy for the system player might then,
for example, alternate between 0010 and 0001 in subsequent visits to 00, and choose 1000
from 10, and 0100 from 01, in order to avoid visits to 11.

1.3 The Logic-Automata Connection
In applications like verification and synthesis, the automata- and game-theoretic machinery
is usually ”hidden” behind a logical formulation of the problem. For example, we might
express the mutual exclusion property as a formula of linear-time temporal logic (LTL)
such as ¬(at1(P0) ∧ at1(P1)). The verification or synthesis algorithm then relies on a
translation of the formula into an equivalent automaton, and, for synthesis, on a further
translation into a game. The following picture shows some useful logics together with their
corresponding automata:

LTL S1S word automata

CTL

CTL* S2S tree automata

• Linear-time temporal logic (LTL) describes sets of infinite words.
Example: at1(P0), meaning that P0 is infinitely often at location 1.

• Computation-tree logic (CTL / CTL*) describes sets of infinite trees.
Example: EF at1(P0) ∧ EF at1(P1), meaning that there exists a computation path in
which P0 reaches location 1, and there is a (possibly different) computation path in
which P1 reaches location 1.

• Monadic second-order logic with one successor (S1S) is a logic over infinite words. Its
expressiveness exceeds that of LTL.
Example: ∀x . x ∈ P → S(x) ∈ P , meaning that a (given) set of natural numbers P
is either empty or consists of all positions starting from some position of the word.

• Monadic second-order logic with two successors (S2S) is a logic over binary trees. Its
expressiveness exceeds that of CTL* (on binary trees).
Example: ∀x . x ∈ P → S1(x) ∈ P ∨ S2(x) ∈ P , meaning that a (given) set of nodes
P contains from each node n ∈ P an entire path starting in n.

3

Besides verification and synthesis, an immediate and very important application of the
connection between logic and automata is to decide the satisfiability problem of the various
logics.

Example 1.3. Suppose we wish to know if there exist two natural numbers x and y such
that x = y + 1 and y = x+ 1. This is expressed as the S1S formula x = S(y) ∧ y = S(x).
We translate each conjunct into an automaton:

s0 s1 s2

∅

{y} {x}

∅

s′0 s′1 s′2

∅

{x} {y}

∅

Here the alphabet consists of subsets of {x, y}. A variable appears at exactly one position in
a word, namely at the position that corresponds to its value. It is easy to see that there does
not exist a word that is accepted by both automata. Hence, our formula is unsatisfiable.

4

2 Büchi Automata
We now introduce our first type of automata over infinite words. Büchi automata are
named after Julius Richard Büchi, a Swiss logician and mathematician (∗1924, †1984).
Büchi automata were invented during the 1960s for the purpose of developing a decision
procedure for S1S. Even though Büchi automata are a fairly simple variation of standard
finite automata, they already suffice to characterize the entire class of ω-regular languages.

2.1 Preliminaries
We begin with some basic notations. We use the symbol N to denote the set {0, 1, 2, 3, . . .}
of natural numbers and N+ to denote the set {1, 2, 3, . . .} of positive natural numbers. For
n,m ∈ N with n ≤ m we use [n,m] to denote the set {n, n + 1, . . . ,m} and [n] for the
special case of [0, n − 1]. An alphabet is a nonempty, finite set of symbols, usually denoted
by Σ. The elements of an alphabet are called letters. Let an alphabet Σ be given, then the
concatenation w = w(0)w(1)...w(n− 1) of finitely many letters of Σ is called a finite word
over Σ, where n defines the length of w also denoted by |w|. The only word of length 0
is the empty word denoted by ε. The set of all finite words over Σ is denoted by Σ∗. For
Σ∗ \ {ε} we use the shortcut Σ+. Given some word w, we have that for each n ∈ [|w|] the
n-th letter of w is denoted by w(n).

The concatenation of infinitely many letters defines an infinite word which has infinite
length. The set of all infinite words is denoted by Σω. If Σ is an alphabet, then each subset
of Σ∗ is a language over finite words. Each subset of Σω is a language over infinite words,
also referred to as an ω-language.

2.2 Automata over Infinite Words
The operational behavior of an automaton over infinite words is very similar to that of a
standard automaton over finite words; starting with an initial state, the automaton con-
structs a run by reading one letter of the input alphabet at a time and transitioning to a
successor state permitted by its transitions. Most components of an automaton over in-
finite words are thus familiar from the standard automata over finite words: an alphabet
Σ, a finite set Q of states, a set of initial states I, a set of transitions T . Automata over
infinite words differ from automata over finite words, and different types of automata over
infinite words differ among each other in the acceptance condition, which is responsible for
determining whether an infinite run of the automaton is accepting or not. We leave this
component generic in our general definition of automata over infinite words, and later give
a first concrete definition for the case of Büchi automata.

Definition 2.1. An automaton over infinite words is a tuple A = (Σ, Q, I, T,Acc),
where

• Σ is a finite alphabet,

• Q is a finite set of states,

• I ⊆ Q is a subset of initial states,

• T ⊆ Q× Σ×Q is a set of transitions, and

• Acc ⊆ Qω is the accepting condition.

In the following, we refer to an automaton over infinite words (whenever clear from context)
simply as an automaton. Now we define how an automaton uses an infinite word as input.

5

Note that we do not refer to acceptance in this definition.

Definition 2.2. A run of an automaton A on an infinite input word α is an infinite
sequence of states r = r(0)r(1)r(2) . . . such that the following hold:

• r(0) ∈ I

• for all i ∈ N, (r(i), α(i), r(i+ 1)) ∈ T

Example 2.1. The following is a graphical representation of an automaton over the alpha-
bet Σ = {a, b} and with set of states Q = {A,B,C,D}, initial set of states I = {A}, and
set of transitions T = {(A, a,B), (B, a,C), (C, b,D), (D, b,A)}:

A B

CD

a

a

b

b

On the infinite input word aabbaabb . . ., the (only) run of the automaton is

ABCDABCDABCD

An automaton is deterministic if |I| ≤ 1 and |{(q, σ, q′) ∈ T | q′ ∈ Q}| ≤ 1 for every q ∈ Q
and σ ∈ Σ, otherwise the automaton is nondeterministic. The automaton is complete if
|{(q, σ, q′) ∈ T | q′ ∈ Q}| ≥ 1 for every q ∈ Q and σ ∈ Σ. For deterministic and complete
automata, the transitions are usually given as a function δ : Q×Σ→ Q. The automaton in
the example is deterministic but not complete.

Definition 2.3. An automaton A accepts an infinite word α if:

• there is a run r of A on α, and

• r is accepting: r ∈ Acc.

The language recognized by A is defined as follows: L(A) = {α ∈ Σω | A accepts α}

We say that two automata are equivalent if they have the same language.

2.3 The Büchi Acceptance Condition
The Büchi acceptance condition is given as a set of accepting states F . A run of a Büchi
automaton is accepting if some state from this set occurs infinitely often. Formally, for an
infinite word α over Σ we use Inf(α) = {σ ∈ Σ | ∀m ∈ N.∃n ∈ N. n ≥ m and α(n) = σ} to
denote the set of all letters of Σ that occur infinitely often in α, called the infinity set of α.

Definition 2.4. The Büchi condition büchi(F) on a set of states F ⊆ Q is the set

büchi(F) = {α ∈ Qω | Inf(α) ∩ F 6= ∅}.

An automaton A = (Σ, Q, I, T,Acc) with Acc = büchi(F) is called a Büchi automaton.
The set F is called the set of accepting states.

6

Example 2.2. Let A be the automaton from Example 2.1 with Büchi acceptance condition
büchi({D}). The language of the automaton consists of a single word:

L(A) = {aabbaabbaabb . . .}

As a first observation about Büchi automata, we establish that for every Büchi automaton A
one can construct an equivalent complete Büchi automaton A′:

Construction 2.1. For a Büchi automaton A = (Σ, Q, I, T,büchi(F)), we define the
complete Büchi automaton A′ = (Σ, Q′, I ′, T ′,büchi(F ′)) using:

• Q′ = Q ∪ {qf} where qf is a fresh state

• I ′ = I

• T ′ = T ∪ {(q, σ, qf) | @q′ . (q, σ, q′) ∈ T} ∪ {(qf , σ, qf) | σ ∈ Σ}

• F ′ = F

We prove the correctness of the construction by the following theorem.

Theorem 2.1. For every Büchi automaton A, there is a complete Büchi automaton
A′ such that L(A) = L(A′).

Proof. The runs of A′ are a superset of those of A, because we have not removed any
transitions during the construction of A′. Furthermore, on any infinite input word the
accepting runs of A and A′ are the same, because any run that reaches the new state qf
stays in qf forever, and, since qf 6∈ F ′, such a run is not accepting.

Example 2.3. Completing the automaton from the previous example we obtain the follow-
ing Büchi automaton (the accepting state D is shown with double lines):

A B

CD

f

a

b
a

b

b

a

b

a

a, b

A complete deterministic automaton may be viewed as a total function from Σω to Qω. A
complete (possibly nondeterministic) automaton produces at least one run for every input
word.

7

8

3 Büchi’s Characterization Theorem

Our next goal is to characterize the languages that can be recognized by Büchi automata.
For languages over finite words, Kleene’s theorem states that the set of languages over finite
words that can be defined by regular expressions is exactly the set of languages that can
be recognized by automata over finite words. We quickly review this result, then define
ω-regular expressions, and finally prove the corresponding theorem for ω-regular languages:
Büchi’s characterization theorem.

3.1 Kleene’s Theorem

We give a quick recap of regular languages and Kleene’s theorem. This is not meant as a
full introduction to finite automata theory; if you want to brush up some more on this, we
recommend the textbook “Introduction to Automata Theory, Languages, and Computation”
by Hopcroft, Motwani, and Ullman.

Regular expressions consist of constants and operator symbols that denote languages of
finite words and operations over these languages, respectively.

Definition 3.1. Regular expressions are defined as follows:

• The constants ε and ∅ are regular expressions.
L(ε) = {ε},L(∅) = ∅.

• If a ∈ Σ is a symbol, then a is a regular expression.
L(a) = {a}.

• If E and F are regular expressions, then E + F is a regular expression:
L(E + F) = L(E) ∪ L(F).

• If E and F are regular expressions, then E · F is a regular expression:
L(E · F) = {uv | u ∈ L(E), v ∈ L(F)}.

• If E is a regular expression, then E∗ is a regular expression.
L(E∗) = {u1u2 . . . un | n ∈ N, ui ∈ L(E) for all 0 ≤ i ≤ n}.

A language over finite words is regular if it is definable by a regular expression. Alterna-
tively, regular languages can be defined as the languages recognized by automata over finite
words.

Definition 3.2. An automaton on finite words A is a tuple (Σ, Q, I, T, F), where Σ is
an input alphabet, Q is a nonempty finite set of states, I ⊆ Q is a set of initial states,
∆ ⊆ Q× Σ×Q is a set of transitions, and F ⊆ Q are a set of final states.

An automaton A accepts a finite word w ∈ Σ∗ if there is a finite sequence of states
q(0)q(1) . . . q(|w|) such that q(0) ∈ I and (q(i), w(i), q(i+ 1)) ∈ ∆ for all i < |w| and with
q(|w|) ∈ F . The set of all words accepted by A is called the language of A, denoted by L(A).
The equivalence of regular expressions and finite automata is known as Kleene’s theorem.

Theorem 3.1 (Kleene’s Theorem). A language is regular iff it is recognized by some
finite word automaton.

9

3.2 ω-Regular Languages
ω-regular expressions denote languages over infinite words. In addition to language union
on languages over infinite words, we have two operations that convert languages over finite
words into languages over infinite words: the infinite concatenation Rω of words of a regular
language R and the concatenation R·U of a regular language R and an ω-regular language U .

Definition 3.3. The ω-regular expressions are defined as follows.

• If E is a regular expression where ε 6∈ L(E),
then Eω is an ω-regular expression.
L(Eω) = L(E)ω
where Lω = {w0w1 . . . | wi ∈ L, |wi| > 0 for all i ∈ N} for L ⊆ Σ∗.

• If E is a regular expression and W is an ω-regular expression,
then E ·W is an ω-regular expression.
L(E ·W) = L(E) · L(W)
where L1 · L2 = {wα | w ∈ L1, α ∈ L2} for L1 ⊆ Σ∗, L2 ⊆ Σω.

• If W1 and W2 are ω-regular expressions,
then W1 +W2 is an ω-regular expression.
L(W1 +W2) = L(W1) ∪ L(W2).

A language over infinite words is ω-regular if it is definable by an ω-regular expression.

3.3 Closure Properties of the Büchi-Recognizable Languages
Büchi’s characterization theorem states that the ω-regular languages are exactly the lan-
guages recognized by Büchi automata. In the following we will refer to the languages rec-
ognized by Büchi automata simply as Büchi-recognizable languages. To prepare for the
proof of Büchi’s theorem, we establish several closure properties of the Büchi-recognizable
languages. First off, the Büchi-recognizable languages are closed under language union, as
demonstrated by the following simple construction.

Construction 3.1. Let L1 and L2 be ω-languages recognized by the Büchi automata
A1 = (Σ, Q1, I1, T1,büchi(F1)) and A2 = (Σ, Q2, I2, T2,büchi(F2)), respectively. We
construct A∪ = (Σ, Q∪, I∪, T∪,büchi(F∪)) with L(A∪) = L1 ∪ L2 as follows:

• Q∪ = Q1 ∪Q2 (w.l.o.g. we assume Q1 ∩Q2 = ∅)

• I∪ = I1 ∪ I2 • T∪ = T1 ∪ T2 • F∪ = F1 ∪ F2

The correctness of this construction is proven by the following theorem.

Theorem 3.2. If L1 and L2 are Büchi-recognizable, then so is L1 ∪ L2.

Proof. We prove that the Büchi automaton A∪ built by Construction 3.1 from the Büchi
automata A1 and A2 indeed recognizes the union of the languages of the two automata.
L(A∪) ⊆ L(A1) ∪ L(A2): For α ∈ L(A∪), we have an accepting run r = r(0)r(1)r(2) . . .

of A∪ on α. If r(0) ∈ I1, then r is an accepting run of A1, otherwise r(0) ∈ I2 and r is an
accepting run of A2.
L(A∪) ⊇ L(A1) ∪ L(A2): For i ∈ {1, 2} and α ∈ L(Ai), there is an accepting run r of

Ai. The run r is also an accepting run of A∪.

10

As we will see later, the Büchi-recognizable languages are closed under complement. To-
gether with the closure under union, the closure under complement implies the closure
under intersection (because the intersection of two sets is the complement of the union of
the complements of the two sets). Since the proof of the closure under complement is more
complicated, we postpone this for now, however, and instead give a direct construction for
the closure under intersection.

Construction 3.2. Let L1 and L2 be ω-languages recognized by the Büchi automata
A1 = (Σ, Q1, I1, T1,büchi(F1)) and A2 = (Σ, Q2, I2, T2,büchi(F2)), respectively. We
construct A∩ = (Σ, Q∩, I∩, T∩,büchi(F∩)) with L(A∩) = L1 ∩ L2 as follows:

• Q∩ = Q1 ×Q2 × {1, 2}

• I∩ = I1 × I2 × {1}

• T∩ = {((q1, q2, i), σ, (q′1, q′2, j)) | (q1, σ, q
′
1) ∈ T1, (q2, σ, q

′
2) ∈ T2, i, j ∈ {1, 2},

qi /∈ Fi → i = j ∧ qi ∈ Fi → i 6= j}

• F∩ = {(q1, q2, 2) | q1 ∈ Q1, q2 ∈ F2}

The automaton for the intersection is essentially the product of the two automata. The
states of the new automaton contain the states of the two automata plus a third component,
which is used to combine the acceptance conditions of the two automata. The product au-
tomaton alternates between waiting for a visit to the accepting states of the first automaton
(in which case the third component is 1) and waiting for a visit to the accepting states of
the second automaton (in which case the third component is 2). The accepting states of the
product are those states where the third component is 2 and where the second automaton
visits an accepting state, i.e., where both automata have seen an accepting state since the
last visit to an accepting state of the product automaton.

Theorem 3.3. If L1 and L2 are Büchi-recognizable, then so is L1 ∩ L2.

Proof. We prove that the Büchi automaton A∩ built by Construction 3.2 from the Büchi
automataA1 andA2 indeed recognizes the intersection of the languages of the two automata.

r′ = (q0
1 , q

0
2 , t

0)(q1
1 , q

1
2 , t

1) . . . is a run of A∩ on an input word α iff r1 = q0
1q

1
1 . . . is a run

of A1 on α and r2 = q0
2q

1
2 . . . is a run of A2 on α. The run r′ is accepting iff r1 is accepting

and r2 is accepting.

Next, the concatenation of a regular language and a Büchi-recognizable language is again
Büchi-recognizable.

Construction 3.3. Let A1 = (Σ, Q1, I1, T1, F1) be an automaton over finite words
that recognizes the language L1, and let A2 = (Σ, Q2, I2, T2,büchi(F2)) be a Büchi
automaton over the same alphabet that recognizes L2. We construct a Büchi automaton
A′ = (Σ, Q′, I ′, T ′,büchi(F2)) with L(A′) = L1 · L2 as follows:

• Q′ = Q1 ∪Q2 (w.l.o.g. we assume Q1 ∩Q2 = ∅)

• I ′ =
{
I1 if I1 ∩ F1 = ∅
I1 ∪ I2 otherwise

• T ′ = T1 ∪ T2 ∪ {(q, σ, q′) | (q, σ, f) ∈ T1, f ∈ F1, q
′ ∈ I2}

11

The correctness of this construction is proven by the following theorem.

Theorem 3.4. If L1 is a regular language and L2 is Büchi-recognizable, then L1 · L2
is Büchi-recognizable.

Proof. We prove that the Büchi automaton A′ built in Construction 3.3 from the automaton
on finite words A1 and the Büchi automaton A2 indeed recognizes the concatenation of the
languages of the two automata.
L(A′) ⊆ L(A1) · L(A2): For α ∈ L(A′), let r = r(0)r(1)r(2) . . . be an accepting run

of A′ on α. If r(0) ∈ I1, then there is an n ∈ N such that (r(n), α(n), r(n+ 1)) ∈ Q1 ×
Σ × I2 and therefore, there is a a final state f ∈ F1 such that r(0)r(1) . . . r(n)f is an
accepting run of A1 on α(0)α(1) · · ·α(n) and r(n+ 1)r(n+ 2) . . . is an accepting run of A2
on α(n+ 1)α(n+ 2)
If r(0) ∈ I2 then I1 ∩ F1 6= ∅ and therefore, ε ∈ L(A1), α ∈ L(A2).
L(A′) ⊇ L(A1) · L(A2): For w ∈ L(A1), let r = r(0)r(1) · · · r(n) be an accepting run

of A1 on w. For α ∈ L(A2), let s = s(0)s(1) . . . be an accepting run of A2 on α. Then,
r(n) ∈ F1 and, by construction, r(0)r(1) . . . r(n− 1)s(0)s(1) . . . is an accepting run of A′ on
wα.

Finally, we show that the infinite concatenation of words of a regular language forms a
Büchi-recognizable language. We construct a Büchi automaton for this language from an
automaton over finite words in two steps. The first construction modifies a given automa-
ton over finite words into an equivalent automaton with a single initial state that has no
incoming transitions.

Construction 3.4. Let A = (Σ, Q, I, T, F) be an automaton over finite words. We
assume that ε /∈ L(A). We construct an automaton A′ = (Σ, Q′, I ′, T ′, F) over finite
words such that L(A) = L(A′) and A′ has a single initial state that has no incoming
transitions.

• Q′ = Q ∪ {qf} where qf is a fresh state

• I ′ = {qf}

• T ′ = T ∪ {(qf , σ, q′) | (q, σ, q′) ∈ T for some q ∈ I}

The second construction builds the Büchi automaton that recognizes the infinite concatena-
tions of words from the regular language by adding a loop to the modified automaton.

Construction 3.5. Let A be an automaton over finite words, for which we assume
that ε /∈ L(A). We construct a Büchi automaton A′′ = (Σ, Q′′, I ′′, T ′′,büchi(F ′′)) such
that L(A′′) = L(A)ω. Let A′ = (Σ, Q′, I ′, T ′, F ′) be the automaton of Construction 3.4.
Then A′′ is defined as follows:

• Q′′ = Q′

• I ′′ = I ′

• T ′′ = T ′ ∪ {(q, σ, qf) | (q, σ, q′) ∈ T ′ and q′ ∈ F ′}

• F ′′ = I ′

The correctness of this construction is proven by the following theorem.

12

Theorem 3.5. If L is a regular language such that ε 6∈ L, then Lω is Büchi-recognizable.

Proof. Construction 3.4 does not affect the language of A. We show that the Büchi automa-
ton A′′ built in Construction 3.5 from the resulting automaton A′ on finite words indeed
recognizes L(A′)ω.
L(A′′) ⊆ L(A′)ω: Assume that α ∈ L(A′′) and that r(0)r(1)r(2) . . . is an accepting

run of A′′ on α. Hence, we have that r(i) = qf ∈ F ′′ = I ′ for infinitely many indices i:
i0, i1, i2, This provides a sequence of runs of A′:

• run r(0)r(1) . . . r(i0 − 1)q on w0 = α(0)α(1) . . . α(i0 − 1) for some q ∈ F ′

• run r(i0)r(i0 + 1) . . . r(i1 − 1)q on w1 = α(i0)α(i0 + 1) . . . α(i1 − 1) for some q ∈ F ′

• and so forth.

We thus have that wk ∈ L(A′) for every k ≥ 0. Hence, α ∈ L(A′)ω.
L(A′′) ⊇ L(A′)ω: Assume that α = w0w1w2 . . . ∈ Σω such that wk ∈ L(A′) for all

k ≥ 0. For each k, we choose an accepting run rk(0)rk(1)rk(2) . . . rk(nk) of A′ on wk.
Hence, rk(0) ∈ I ′ and rk(nk) ∈ F ′ for all k > 1. Thus,

r0(0) . . . r0(n0 − 1)r1(0) . . . r1(n1 − 1)r2(0) . . . r2(n2 − 1) . . .

is an accepting run of A′′ on α. Hence, α ∈ L(A′′).

3.4 Büchi’s Characterization Theorem
We are now ready to prove Büchi’s Characterization Theorem, a result from 1962.

Theorem 3.6 (Büchi’s Characterization Theorem). An ω-language is Büchi-recognizable
iff it is ω-regular.

Proof. “⇐” follows from the closure properties of the Büchi-recognizable languages estab-
lished by Theorems 3.2, 3.4, and 3.5.

“⇒”: Given a Büchi automaton A, we consider for each pair q, q′ ∈ Q the regular
language

Wq,q′ = {w ∈ Σ∗ | finite-word automaton (Σ, Q, {q}, T, {q′}) accepts w } .

We claim that L(A) =
⋃
q∈I,q′∈F Wq,q′ · (Wq′,q′ \ {ε})ω. The claim is proven as follows.

L(A) ⊆
⋃
q∈I,q′∈F Wq,q′ · (Wq′,q′ \{ε})ω: Let α ∈ L(A). Then there is an accepting run r

of A on α, which begins at some q = r(0) ∈ I and visits some q′ ∈ F infinitely often:

r : q w0−−→ q′
w1−−→ q′

w2−−→ q′
w3−−→ . . . ,

where wi ∈ Σ∗ for all i ≥ 0, |wi| > 0 for all i > 0 and α = w0w1w2 The nota-
tion q0

w−→ qk+1 for some finite word w = w(0)w(1) . . . w(k) means that there exist states
q1, . . . qk ∈ Q s.t. (qi, w(i), qi+1) ∈ T for all 0 ≤ i ≤ k. Since w0 ∈Wq,q′ and wk ∈Wq′,q′ for
k > 0, we have that α ∈Wq,q′ ·Wq′,q′

ω for some q ∈ I, q′ ∈ F .

L(A) ⊇
⋃
q∈I,q′∈F Wq,q′ · (Wq′,q′ \ {ε})ω: Let α = w0w1w2 . . . with w0 ∈ Wq,q′ and

wk ∈Wq′,q′ for some q ∈ I, q′ ∈ F and for all k > 0. Then the run

r : q w0−−→ q′
w1−−→ q′

w2−−→ q′
w3−−→ . . .

exists and is accepting because q′ ∈ F . It follows that α ∈ L(A).

13

14

4 Deterministic Büchi Automata
One of the most important constructions in the theory of automata over finite words is the
Rabin-Scott powerset construction, which converts a nondeterministic automaton over finite
words into a deterministic automaton that recognizes the same language. The powerset
construction establishes that while nondeterminism makes automata over finite words more
concise (the powerset construction produces an exponential number of states), nondetermin-
ism does not make automata over finite words more expressive. The situation is different
for Büchi automata: even though the language L = (a+ b)∗bω is clearly Büchi-recognizable,
there is, as the following theorem shows, no deterministic Büchi automaton that recognizes L.

Theorem 4.1. The language L = (a + b)∗bω is not recognizable by a deterministic
Büchi automaton.

Proof. Assume, by way of contradiction, that L is recognizable by the deterministic Büchi
automaton A = (Σ, Q, I, T,büchi(F)). Since α0 = bω is in L, there is a unique run

r0 = r0(0)r0(1)r0(2) . . .

of A on α0 with r0(n0) ∈ F for some n0 ∈ N. Similarly, α1 = bn0abω in L and there is a
unique run

r1 = r0(0)r0(1)r0(2) . . . r0(n0)r1(n0 + 1)r1(n0 + 2) . . .

of A on α1 with r1(n1) ∈ F for some n1 > n0. Because A is deterministic, r0 and r1 are
identical up to position n0.

By repeating this argument infinitely often, we obtain a word α = bn0abn1abn2a . . . and
a run r with infinitely many visits to F . Hence, α is accepted by A. However, α is not an
element of L. This contradicts L = L(A).

What languages are recognizable by deterministic Büchi automata? A straightforward char-
acterization can be given in terms of the limit operator.

Definition 4.1 (Limit). The limit −→W of a language W ⊆ Σ∗ over finite words is the
following language over infinite words:

−→
W = {α ∈ Σω | there exist infinitely many n ∈ N s.t. α[0, n] ∈W}.

Theorem 4.2. An ω-language L ⊆ Σω is recognizable by a deterministic Büchi au-
tomaton iff there is a regular language W ⊆ Σ∗ s.t. L = −→W .

Proof. We claim that the languages of a deterministic Büchi automaton AB and of a deter-
ministic automaton over finite words AF , where the automata AB = (Σ, Q, I, T,büchi(F))
and AF = (Σ, Q, I, T, F), constructed from the same components, are related as follows:

L(AB) =
−−−−→
L(AF).

Since every regular language is recognized by a deterministic automaton over finite words,
the theorem follows. To prove the claim, we consider an infinite word α ∈ Σω.

15

α ∈ L(AB)
iff for the unique run r of AB on α, Inf(r) ∩ F 6= ∅

iff α[0, n] ∈ L(AF) for infinitely many n ∈ N

iff α ∈
−−−−→
L(AF)

Next on our agenda is the complementation of languages. For regular languages, this is
very simple: one translates a given complete deterministic automaton A that recognizes
some language L ⊆ Σ∗ into an automaton A′ that recognizes the complement Σ∗ \ L by
complementing the set of final states, i.e., F ′ = F \ F . For deterministic Büchi automata,
the construction is slightly more complicated, because it introduces nondeterminism.

Construction 4.1. Let A = (Σ, Q, I, T,büchi(F)) be a complete deterministic Büchi
automaton. We construct a Büchi automaton A′ = (Σ, Q′, I ′, T ′,büchi(F ′)) with
L(A′) = Σω \ L(A) as follows:

• Q′ = (Q× {0}) ∪ ((Q \ F)× {1})

• I ′ = I × {0}

• T ′ = {((q, 0), σ, (q′, i)) | (q, σ, q′) ∈ T, i ∈ {0, 1}, (q′, i) ∈ Q′} ∪
{((q, 1), σ, (q′, 1)) | (q, σ, q′) ∈ T, q′ ∈ Q \ F}

• F ′ = (Q \ F)× {1}

The construction uses two copies of the given automaton A, where all accepting states are
eliminated from the second copy. The switch from the first copy (identified by the flag 0)
to the second copy (identified by the flag 1) happens nondeterministically. The automaton
accepts if the run ends up in the second copy, which means that, on the unique run of A
on the input word, the accepting states of A are only visited finitely often. Note that the
resulting automaton is nondeterministic. This is, in general, unavoidable, because there are
languages, such as L = (b∗a)ω where the language itself is recognizable by a deterministic
Buchi automaton, while its complement Σω \L can only be recognized by a nondeterministic
Büchi automaton.

Theorem 4.3. For every deterministic Büchi automaton A, there exists a Büchi au-
tomaton A′ such that L(A′) = Σω \ L(A).

Proof. Let A′ be constructed from the given deterministic Büchi automaton A (which we
assume, w.l.o.g., to be complete) by Construction 4.1. We prove that L(A′) = Σω \ L(A).

L(A′) ⊆ Σω \ L(A): For every word α ∈ L(A′) we have an accepting run

r′ : (q0, 0)(q1, 0) . . . (qj , 0)(q′0, 1)(q′1, 1) . . .

on A′. Hence, r : q0q1q2 . . . qjq
′
0q
′
1 . . . is the unique run of A on α. Since q′0, q′1, . . . ∈ Q \ F ,

we have that Inf(r) ⊆ Q \ F . Hence, r is not accepting and α ∈ Σω \ L(A).

L(A′) ⊇ Σω \ L(A): Let α /∈ L(A) be some word that is not in the language of A.
Since A is complete and deterministic, there exists a unique run r : q0q1q2 . . . of A on α and

16

Inf(r)∩F = ∅. Thus, there exists a k ∈ N such that qj /∈ F for all j > k. This gives us the
run

r′ : (q0, 0)(q1, 0) . . . (qk, 0)(qk+1, 1)(qk+2, 1) . . .

of A′ on α with Inf(r′) ⊆ ((Q \ F) × {1}) = F ′. Hence, r′ is accepting and therefore
α ∈ L(A′).

Example 4.1. We use Construction 4.1 to complement the deterministic Büchi automaton
A with language (b∗a)ω. The result is the nondeterministic Büchi automaton A′ with lan-
guage (a+ b)∗bω.

p q

a

b

b

a

p, 0 q, 0

q, 1

a

b

b

b

a

b

b

Note that, since not all ω-regular languages can be recognized by deterministic Büchi au-
tomata, Construction 4.1 does not provide us with a complementation construction for all
ω-regular languages. Such a general construction will be the subject of the following section.

17

18

5 Complementation of Büchi Automata
Complementation is an important operation in verification. In particular we can, as dis-
cussed in the introduction, reduce the question whether the language of an automaton A1,
representing the system, is contained in the language of an automaton A2, representing
the specification, to the language emptiness problem of an automaton that recognizes the
intersection of the language of A1 with the complement of the language of A2. While the
closure of the Büchi-recognizable languages under complementation has been known since
the 1960s, improvements to the complementation construction were made until around 2009.
The construction discussed in the following is due to Kupferman and Vardi.

In order to determine whether a given word is in the complement of the language of a
nondeterministic automaton, we must check whether all runs of the automaton are reject-
ing. We begin by representing the set of all runs as an infinite directed acyclic graph (DAG):

Definition 5.1. Let A = (Σ, Q, I, T,büchi(F)) be a nondeterministic Büchi automa-
ton. The run DAG of A on a word α ∈ Σω is the directed acyclic graph G = (V,E)
where

• V =
⋃
i≥0

(Qi × {i}) where Q0 = I and Qi+1 =
⋃

q∈Qi,
(q,α(i),q′)∈T

{q′}

• E = {((q, i), (q′, i+ 1)) | i ≥ 0, (q, α(i), q′) ∈ T}

A path in a run DAG is accepting iff it visits F ×N infinitely often. The automaton accepts
a word α ∈ Σω iff some path in the run DAG on α is accepting.

Example 5.1. Consider the following nondeterministic Büchi automaton A. The language
of A consists of all infinite words over {a, b} with infinitely many bs, i.e., (a∗b)ω:

p q r

a, b

a, b

b

a

a, b

The run DAG of A on α = ababaaa . . . is shown below. Note that starting with level 1, every
level of the graph includes the accepting state q, indicating that for every number n ≥ 1,
there exists a run that visits q in the nth position. However, since α is not in the language
of A, there is no run that visits q infinitely often.

p, 0 p, 1 p, 2 p, 3 p, 4 p, 5 p, 6 p, 7 . . .

a b a b a a a

q, 1 q, 2 q, 3 q, 4 q, 5 q, 6 q, 7 . . .

r, 3 r, 4 r, 5 r, 6 r, 7 . . .

19

To prove that none of the paths in a given run DAG is accepting, we use an annotation of
the vertices of the run DAG with natural numbers, called a ranking. The numbers assigned
by the ranking come from a finite set, whose size is derived from the number of states of
the automaton. We require that vertices that are labeled with odd numbers do not contain
accepting states and that the rank never increases along paths in the run DAG. If further-
more all paths eventually stay in some odd rank, then we call the ranking odd.

Definition 5.2. A ranking for a run DAG G is a function f : V → {0, . . . , 2|Q|} such
that

• for all (q, i) ∈ V where f(q, i) is odd, we have that q /∈ F , and

• for all ((q, i), (q′, i′)) ∈ E, we have that f(q′, i′) ≤ f(q, i).

A ranking is odd iff for all paths (q0, i0)(q1, i1)(q2, i2) . . . in G, there is a position n ∈ N
such that f(qn, in) is odd and, for all j ≥ 0, f(qn+j , in+j) = f(qn, in).

Example 5.2. Continuing our example, we annotate the run DAG with an odd ranking.
The ranks are displayed with the following colors: rank 1 - rank 2 - rank 3 - rank 4.

p, 0 p, 1 p, 2 p, 3 p, 4 p, 5 p, 6 p, 7 . . .

a b a b a a a

q, 1 q, 2 q, 3 q, 4 q, 5 q, 6 q, 7 . . .

r, 3 r, 4 r, 5 r, 6 r, 7 . . .

Clearly, the existence of an odd ranking implies that there is no accepting run.

Lemma 5.1. If there exists an odd ranking for the run DAG G of a nondeterministic
Büchi automaton A on a word α ∈ Σω, then A does not accept α.

Proof. Consider that by the definition of an odd ranking, every path eventually gets trapped
in some odd rank, and if f(q, i) is odd, then q /∈ F . We conclude that every path of G visits
F only finitely often.

The more complicated argument is to show that if there is no accepting run, then there
exists an odd ranking. We begin by introducing some helpful terminology. Let G′ be a
subgraph of G. We call a vertex (q, i)

• safe in G′, if for all vertices (q′, i′) reachable from (q, i), we have that q′ /∈ F , and

• endangered in G′, if only finitely many vertices are reachable from (q, i).

We now define a sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of subgraphs of G inductively as follows:

• G0 = G

20

• G2j+1 = G2j \ {(q, i) | (q, i) is endangered in G2i}

• G2j+2 = G2j+1 \ {(q, i) | (q, i) is safe in G2i+1}

Example 5.3. Consider again the run DAG from our previous examples with the coloring
from Example 5.2. G0 is the entire graph. There are no endangered vertices in G0, hence
G1 = G0. The red vertices are safe in G1; hence, G2 consists of all vertices except the red
vertices. In G2, the green vertices are endangered; hence, G3 consists of all vertices except
the red and green vertices. In G3, the blue vertices are safe; leaving only the non-colored
vertices for G4. G4 is finite, hence all remaining vertices are endangered. G5 and all further
subgraphs thus are empty.

In the example, G5 and all further subgraphs are empty. In general, if A has n states, then
G2n+1 is empty. We establish this fact with the inductive argument of the following lemma:

Lemma 5.2. If A does not accept α, then the following holds: For every n ≤ 2|Q|
there exists an `n ∈ N such that for all i ≥ `n we have at most |Q| − n vertices of the
form (_, i) in G2n.

Proof. We prove the lemma by induction on n ∈ N. The case of n = 0 is straightforward, as
every subgraph of G has at most |Q| vertices of the from (_, i). So, let n be greater than 0.

First assume that G2(n−1) is finite. Then every vertex in G2(n−1) is endangered and
correspondingly, both G2n−1 and Gn are empty.

Next, assume that G2(n−1) is infinite. Then there must exist a safe vertex (q,m) in
G2n−1, as otherwise, we can construct a path within G containing infinitely many visits
to F . We choose `n = m and claim that for all j ≥ `n, there are at most |Q| − n many
vertices of the form (_, j) in G2n. Our claim is proven as follows:

Since (q, `n) ∈ G2n−1, we know that it is not endangered in G2(n−1). Hence, there are
infinitely many vertices reachable from (q, `n) in G2(n−1). It follows by König’s Lemma, that
there exists an infinite path p = (q, `n)(q1, `n + 1)(q0, `n + 2) . . . in G2(n−1). Given that the
path is infinite, clearly no vertex of p is endangered in G2(n−1). Thus, p is also a path of
G2n−1. Since (q, `n) is safe in G2n−1, all vertices on p are safe in G2n−1 as well. Hence, by
the construction of G2n, we can conclude that none of the vertices of p are in G2n. Thus,
for all j ≥ `n, the number of vertices of the form (_, j) in G2n is strictly smaller than in
G2(n−1), concluding the proof.

With these preparations, we are now ready to show that the existence of an odd ranking is
not only sufficient for the absence of an accepting run, but also necessary.

Lemma 5.3. If A does not accept α, then there exists an odd ranking for the run DAG
of A on α.

Proof. We define the function f by f(q, i) = 2n if the vertex (q, i) is endangered in G2n and
by f(q, i) = 2n+ 1 if (q, i) is safe in G2n+1. We claim that f is an odd ranking:

By Lemma 5.2, Gj is empty for j > 2|Q|. Hence, f : V → {0, . . . , 2|Q|}. Furthermore:

• For all successors (q′, i′) of a vertex (q, i) it holds that f(q′, i′) ≤ f(q, i):

Let j = f(q, i). Then if j is even, the vertex (q, i) is endangered in Gj . Hence, either
(q′, i′) is not in Gj , and therefore f(q′, i′) ≤ j, or (q′, i′) is in Gj , and thus endangered,

21

i.e., f(q′, i′) = j. Analogously, if j is odd, then the vertex (q, i) is safe in Gj such that
either (q′, i′) is not in Gj , and therefore f(q, i) < j, or (q′, i′) is in Gj , and thus safe,
i.e. f(q, i) = j.

• f is odd:

For every path (q0, i0)(q1, i1)(q2, , i2) . . . in G there exists an n ∈ N such that for
all j ≥ n we have that f(qj , ij) = f(qn, in). Now, suppose that k = f(qn, in) is
even. Then, (qn, in) is endangered in Gk. Furthermore, all (qj , ij) are in Gk, since
f(qj , ij) = k for all j ∈ N. However, this contradicts that (qn, in) is endangered in Gk
such that k must be odd.

In our complementation construction, we build an automaton that constructs the run DAG
level by level and nondeterministically “guesses” the odd ranking. A level ranking is a
function g : Q → {0, . . . , 2|Q|} ∪ {⊥} such that if g(q) is odd, then q /∈ F . The special
element ⊥ indicates that the state is not present in the level of the run DAG.

LetR be the set of all level rankings. We say that a level ranking g′ covers a level ranking
g if for all q, q′ ∈ Q, where g(q) 6= ⊥ and (q, σ, q′) ∈ T , it holds that ⊥ 6= g′(q′) ≤ g(q).

Construction 5.1. For a given Büchi automaton A = (Σ, Q, I, T,büchi(F)) we con-
struct a Büchi automaton A′ = (Σ, Q′, I ′, T ′,büchi(F ′)) with L(A′) = Σω \ L(A) as
follows.

• Q′ = R× 2Q

• I ′ = {(g0,∅) | g0 ∈ R, g0(q) = ⊥ iff q /∈ I}

• T ′ = {((g,∅), σ, (g′, P ′)) | g′ covers g, P ′ = {q′ ∈ Q | g′(q′) is even}} ∪
{((g, P), σ, (g′, P ′)) | P 6= ∅, g′ covers g,

P ′ = {q′ ∈ Q | (q, σ, q′) ∈ T, q ∈ P, g′(q′) is even}}

• F ′ = R× {∅}

Intuitively, the first component of each state identifies the level ranking, and the second
component tracks the states whose corresponding vertices in the run DAG have even ranks.
Paths that traverse such vertices should eventually reach a vertex with an odd rank and the
acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.

Theorem 5.1. For every Büchi automaton A there exists a Büchi automaton A′ such
that L(A′) = Σω \ L(A).

Proof. L(A′) ⊆ Σω r L(A): Let α ∈ L(A′) and let r′ = (g0, P0)(g1, P1) . . . be an accepting
run of A′ on α. Further, let G = (V,E) be the run DAG of A on α. Then the function
f : (q, i)→ gi(q) for q ∈ Qi and i ∈ N is a ranking for G, because if gi(s) is odd then s /∈ F
and for every ((q, i), (q′, i+ 1)) ∈ E it holds that gi+1(q′) ≤ gi(q).

We claim that f is an odd ranking for G. By way of contradiction assume that it is not.
Then there is a path (q0, i0)(q1, i1)(q2, i2) . . . in G such that for infinitely many n ∈ N the
rank f(qn, in) is even. Hence, there exists an index m ∈ N, such that f(qm, im) is even and
for all j ≥ m we have that f(qj , ij) = f(qn, in). Now, since r′ is accepting, it follows that
Pk = ∅ for infinitely many k. Let k′ be the smallest such index greater or equal than n.
However, then also Pj 6= ∅ for all j > k′, yielding the desired contradiction.

We conclude that α /∈ L(A), as there is an odd ranking.

22

Σω r L(A) ⊆ L(A′): Let α /∈ L(A) and let G = (V,E) be the run DAG of A on α. Then
there exists an odd ranking f on G and there is a run r′ = (g0, P0)(g1, P1) . . . of A′ on α,
where

• gi(q) =
{
f(q, i) if q ∈ Qi
⊥ otherwise,

• P0 = ∅, and

• Pi+1 =
{
{q ∈ Q | gi+1(q) is even} if Pi = ∅
{q′ ∈ Q | ∃q ∈ Qi ∩ Pi. ((q, i), (q′, i+ 1)) ∈ E, gi+1(q′) is even} otherwise.

The run r′ is accepting, as otherwise there would be an index n such that Pj 6= ∅ for all
j ≥ n, yielding a path in G that visits only finitely often an odd rank. Hence, we conclude
that α ∈ L(A′).

23

24

6 McNaughton’s Theorem
We already established that while the languages that can be recognized with nondeterminis-
tic Büchi automata are exactly the ω-regular languages, the languages that can be recognized
with deterministic Büchi automata are a strictly smaller set. We now repair this deficiency
with a more expressive acceptance condition, the Muller condition. McNaughton’s theorem
states that the set of languages recognizable by deterministic Muller automata are again ex-
actly the ω-regular languages. We will see later that it is very useful to have a deterministic
automaton for a given ω-language, for example in synthesis, where we construct the game
between the system and the environment from a deterministic automaton that recognizes
the winning plays for the system player. Since the complementation of deterministic Muller
automata is a very simple operation, McNaughton’s theorem also provides an alternative
proof for the result of the previous section that the ω-regular languages are closed under
complementation.

6.1 The Muller Acceptance Condition

Definition 6.1. The Muller condition muller(F) on as set of sets of states F ⊆ 2Q
is the set

muller(F) = {α ∈ Qω | Inf(α) ∈ F}

An automaton A = (Σ, Q, I, T,Acc) with Acc = muller(F) is called a Muller automa-
ton. The set F is called the set of accepting subsets (or the table) of A.

Example 6.1. Consider the deterministic automaton over the alphabet Σ = {a, b} shown
below. For the table F = {{q}} we obtain the Muller automaton A recognizing the language
L(A) = (a + b)∗bω, for F ′ = {{q}, {p, q}} we obtain the Muller automaton A′ recognizing
L(A′) = (a∗b)ω.

p q

a

b

b

a

As a first exercise, we translate Büchi automata into Muller automata:

Construction 6.1. For a (deterministic) Büchi automaton A = (Σ, Q, I, T,büchi(F))
we define the (deterministic) Muller automaton A′ = (Σ, Q, I, T,muller(F)) using

F = {S ⊆ Q | S ∩ F 6= ∅}

Since the construction does not modify the transitions, the Muller automaton is again de-
terministic if the Büchi automaton is deterministic. It is straightforward to see that the
automata recognize the same language.

Theorem 6.1. For every (deterministic) Büchi automaton A, there is a (deterministic)
Muller automaton A′ such that L(A) = L(A′).

Proof. The automaton A′ of Construction 6.1 complies with our requirements, since

büchi(F) = {α ∈ Qω | Inf(α) ∩ F 6= ∅} = {α ∈ Qω | Inf(α) ∈ F} = muller(F)

25

A slightly more difficult construction is to translate the Muller automaton back into a Büchi
automaton.

Construction 6.2. Let A = (Σ, Q, I, T,muller({F1, . . . , Fn})) be a Muller automa-
ton and < some arbitrary total order on Q. We construct the Büchi automaton
A′ = (Σ, Q′, I ′, T ′,büchi(F ′)) with L(A′) = L(A) as follows:

• Q′ = Q ∪
n⋃
i=1

({i} × Fi × Fi)

• I ′ = I

• T ′ = T ∪ {(q, σ, (i, q′, q′)) | 1 ≤ i ≤ n, (q, σ, q′) ∈ T, q′ ∈ Fi}
∪ {((i, q, p), σ, (i, q′, p′)) | 1 ≤ i ≤ n, (q, σ, q′) ∈ T ,

p′ =


p if q 6= p

min(Fi) if q = p = max(Fi)
min(Fi r {r | r ≤ p}) if q = p < max(Fi),

q, p, q′ ∈ Fi }

• F ′ =
n⋃
i=1

({i} × {min(Fi)} × {min(Fi)})

A run of the Büchi automaton first simply simulates (while in statesQ) the Muller automaton
and then ”guesses” the accepting subset of the Muller automaton. The purpose of the order
< on the states is that we can ”step” through the states of the accepting subset in order to
make sure that all states in the accepting subset actually occur infinitely often. In states
{i} × Fi × Fi, the first component records the index i of the accepting subset, the second
component the currently visited state of the Muller automaton, and the third component
the ”next” state (according to the order on the states) we need to see in order to make
progress towards accepting the input word. The Büchi automaton accepts if we step through
the states of the accepting subset infinitely often. Recall that we used a similar trick in the
construction of the Büchi automaton for the intersection of two Büchi-recognizable languages
in Construction 3.2.

Theorem 6.2. For every Muller automaton A there is a Buchi automaton A′ such
that L(A) = L(A′).

Proof. We show that the Büchi automaton A′ of Construction 6.2 and A are equivalent.
L(A) ⊆ L(A′): Let α ∈ L(A) and r = q0q1q2 . . . be an accepting run of A on α. As r is

accepting, we have that Inf(r) ∈ F , i.e., there is some 1 ≤ i ≤ n such that Inf(r) = Fi. Let
m the first position such that qj ∈ Inf(r) for all j ≥ m and consider some run

r′ = q0q1 . . . qm−1(i, qm, p0)(i, qm+1, p1)(i, qm+2, p2) . . .

of A′ on α, which nondeterministically switches to (i, qm, p0) at position m. For the sake
of contradiction assume that r is not accepting. Then there is a position k ≥ 0 such that
pj = pk for all j ≥ k. Then also qm+j 6= pj for all j ≥ k. However, this contradicts that
pk ∈ Fi.
L(A′) ⊆ L(A): Let α ∈ L(A′) and

r′ = q0q1 . . . qm−1(i, qm, p0)(i, qm+1, p1)(i, qm+2, p2) . . .

be some accepting run of A′ on α, which has to switch to some (i, qm, p0) at some position m,
as otherwise it would not be accepting. By construction qj ∈ Fi for all j ≥ m and for each

26

p ∈ Fi there are infinitely many positions k such that qk = pk = p. Thus, Inf(pr2(r)) = Fi,
yielding an accepting run r′ = q0q1q2 . . . of A on α.

We now show that deterministic Muller automata are closed, like nondeterministic Büchi
automata, under the Boolean operations (complementation, union, and intersection).

Construction 6.3. For a deterministic Muller automatonA = (Σ, Q, I, T,muller(F))
we construct the deterministic Muller automaton AC = (Σ, Q, I, T,muller(2Q r F))
with L(AC) = Σω r L(A).

We use the function prn for n ∈ N to project to the (n − 1)-th component of a tuple of
arbitrary length. If the tuple has no such component, prn is undefined. The first component
is accessed using pr0, and for sets we have that prn(S) =

⋃
s∈S prn(s).

Construction 6.4. For Muller automata A1 = (Σ, Q1, I1, T1,muller(F1)) and
A2 = (Σ, Q2, I2, T2,muller(F2)) over the same alphabet Σ, we construct the Muller
automaton A∩ = (Σ, Q1 ×Q2, I1 × I2, T∩,muller(F∩)) with L(A∩) = L(A1) ∩L(A2)
and where A∩ is deterministic if A1 and A2 are deterministic, as follows:

• T∩ = {((q1, q2), σ, (q′1, q′2)) | (q1, σ, q
′
1) ∈ T1, (q2, σ, q

′
2) ∈ T2}

• F∩ = {P ⊆ Q1 ×Q2 | pr0(P) ∈ F1, pr1(P) ∈ F2}

Theorem 6.3. The languages recognizable by deterministic Muller automata are closed
under Boolean operations (complementation, union, intersection).

Proof. Deterministic Muller automata are closed under complementation: For a determinis-
tic Muller automaton A, the automaton A′ of Construction 6.3 recognizes the complement
language, because any set F /∈ F has to be in the complement, i.e., F ∈ 2Q r F .

Deterministic Muller automata are closed under intersection: For deterministic Muller
automata A1 and A2, the automaton A∩ of Construction 6.4 recognizes the intersection.
Let r1 = q1

0q
1
1 . . . and r2 = q2

0q
2
1 . . . be accepting runs of A1 and A2 on some α. Then

r = (r1
0, r

2
0)(r1

1, r
2
1) . . . is an accepting run of A∩ on α and vice versa.

Deterministic Muller automata are closed under union: They are closed under comple-
ment and intersection, which suffices by De Morgan’s law.

Theorem 6.4. A language L is recognizable by a deterministic Muller automaton if
and only if L is a Boolean combination of languages −→W where W ⊆ Σ∗ is regular.

Proof. “⇐”: If W is regular, then −→W is recognizable by a deterministic Büchi automa-
ton. Hence, −→W is recognizable by a deterministic Muller automaton. Thus, the boolean
combination L is recognizable by a deterministic Muller automaton.

“⇒”: A deterministic Muller automaton A accepts some word α with a unique run r if
for some F ∈ F we have that Inf(r) = F . Thus, there is some F ∈ F such that for all q ∈ F
we have that α ∈ −→Wq and for all q /∈ F we have that α /∈

−→
Wq, where Wq = L(Aq) for the

finite-word automaton Aq = (Σ, Q, I, T, {q}). Hence,

α ∈
⋃
F∈F

(⋂
q∈F

−→
Wq ∩

⋂
q/∈F

(Σω r
−→
Wq)

)
.

27

6.2 From Nondeterministic to Semi-Deterministic Automata
We prove McNaughton’s theorem in two steps. In this subsection, we translate nondeter-
ministic Büchi automata into semi-deterministic Büchi automata. In the next subsection,
we continue from semi-deterministic Büchi automata to deterministic Muller automata.

A semi-deterministic automaton is a (possibly nondeterministic) automaton where all
accepting runs ultimately end up in a subset of the states from which all transitions are
deterministic.

Definition 6.2. A Büchi automaton A = (Σ, Q, I, T,büchi(F)) is semi-deterministic
if Q = N] D is a partition of Q such that F ⊆ D, pr2(T ∩ (D × Σ × Q)) ⊆ D, and
(Σ, D, {d}, T ∩ (D × Σ×D),büchi(F)) is deterministic for every d ∈ D.

The translation from nondeterministic to semi-deterministic Büchi automata is based on a
subset construction where we collect two sets of states: the states that are reachable on the
given input word and the states that are reachable on some path trough an accepting state.
A state of the semi-deterministic automaton is accepting if the two sets become equal; when
this happens, the second set is reinitialized with the subset of accepting states that appear
in the first component.

Example 6.2. Consider the following nondeterministic Büchi automaton:

r s

a

a

a

The subset construction results in the following deterministic automaton:

({r},∅) ({r, s}, {s}) ({r, s}, {r, s})

a
a

a

The subset construction produces a deterministic automaton that accepts a subset of the
words accepted by the original automaton. If the two sets are equal infinitely often, we can
construct a run of the original automaton that goes through accepting states infinitely often:
intuitively, we can go ”backwards” from each position where the two sets have become equal
and select a path segment for the original automaton where an accepting state is visited (in
the proof below we give a more precise argument using König’s lemma).

There is no general guarantee that the set of reachable states from some position of an
accepting run and the set of states reachable on a path through some accepting state are
the same. This is illustrated by the following example.

Example 6.3. Consider the following automaton:

pq r s

a, b

a a

a a

a

a

Let the input word be aω. From the initial position of some run, which starts in the initial
state p, all states are reachable, but only r, and s are reachable on paths through s.

28

Ultimately, however, every accepting run must reach (and remain in) positions where the
set of reachable states and the set of states reachable on a path through some accepting
state are the same. This is because the set of reachable states can only become smaller
finitely often; hence, at some point, the set of reachable states will remain the same from all
subsequent positions, including those (future) positions of the accepting run where the run
visits an accepting state.

In our semi-deterministic automaton, we therefore start by simulating the given nonde-
terministic automaton. At any point we allow a nondeterministic transition into the (from
then on) deterministic subset construction.

Construction 6.5. For a Büchi automaton A = (Σ, Q, I, T,büchi(F)), we construct
the semi-deterministic Büchi automaton A′ = (Σ, Q′, I ′, T ′,büchi(F ′)) with L(A′) =
L(A) as follows:

• Q′ = Q] (2Q × 2Q)

• I ′ = I

• T ′ = T ∪ {(q, σ, ({q′},∅)) | (q, σ, q′) ∈ T}
∪ {((L1, L2), σ, (L′1, L′2)) | L1 6= L2,

L′1 = pr2(T ∩ L1 × {σ} ×Q),
L′2 = pr2(T ∩ L1 × {σ} × F) ∪ pr2(T ∩ L2 × {σ} ×Q)}

∪ {((L1, L2), σ, (L′1, L′2)) | L1 = L2,

L′1 = pr2(T ∩ L1 × {σ} ×Q),
L′2 = pr2(T ∩ L1 × {σ} × F)}

• F ′ = {(L,L) | L 6= ∅}

Lemma 6.1. For every Büchi automaton A there exists a semi-deterministic Büchi
automaton A′ with L(A) = L(A′).

Proof. We show that the Büchi automaton A′ of Construction 6.5 and A are equivalent.
L(A′) ⊆ L(A): Let α ∈ L(A′) and let r′ = q0q1 . . . qn−1(Ln, L′n)(Ln+1, L

′
n+1) . . . be an

accepting run of A′ on α. Since r′ is accepting, there is an infinite sequence i0i1 . . . of indices
such that i0 = n, and, for all j ≥ 1, Lij = L′ij and Lij 6= ∅. For every j ≥ 1, and every
q′ ∈ Lij there exists a state q ∈ Lij−1 and a sequence q = qij−1 , qij−1+1, . . . , qij = q′ such that
(qk, α(k), qk+1) ∈ T for all k ∈ {ij−1, . . . , ij − 1} and qk ∈ F for some k ∈ {ij−1 + 1, . . . , ij}.
We use the following notation: predecessor(q′, ij) := q, run(q′, i0) = q0q1 . . . qn−1q

′ for
Li0 = {q′}, and run(q′, ij) = (qij−1+1)(qij−1+2) . . . qij , for j ≥ 1.

Now consider the
(⋃

j∈N Lij × {j}
)

-labeled tree where the root is labeled with (q′, 0) for
Li0 = {q′}, and the parent of each node with a label (q′, j) is labeled with
(predecessor(q′, ij), j − 1). The tree is infinite and finite-branching, and, hence, by König’s
Lemma, has an infinite branch (qi0 , i0), (qi1 , i1), . . ., corresponding to an accepting run of A:

run(qi0 , i0) · run(qi1 , i1) · run(qi2 , i2) · . . .

L(A) ⊆ L(A′): Let α ∈ L(A) and let r = q0, q1, . . . be an accepting run of A on α. Let
i ∈ N be an index s.t. qi ∈ F and for all j ≥ i there exists a k > j, such that

{q ∈ Q | qi
α[i,k]−−−→ q} = {q ∈ Q | qj

α[j,k]−−−→ q}.

29

The index i exists: ”⊇” holds for all i, because there is a path through qj . Assume, by way
of contradiction, that for all i ∈ N, there is a j ≥ i s.t for all k > j ”)” holds. Then there
exists an i′ s.t. {q ∈ Q | qi′

α[i′,k]−−−−→ q} = ∅ for all k > i′. Contradiction.
We define a run r′ of A′:

r′ = q0 . . . qi−1({qi},∅)(L1, L
′
1)(L2, L

′
2) . . .

where Lj and L′j are determined by the definition of A′. To prove that r′ is accepting,
assume otherwise, and let m ∈ N be an index such that Ln 6= L′n for all n ≥ m.

Then, let j > m be some index with qj ∈ F ; hence qj ∈ L′j . There exists a k > j such

that L′k+1 = {q ∈ Q | qj
α[j,k]−−−→ q} = {q ∈ Q | qi

α[i,k]−−−→ q} = Lk+1. Contradiction.

6.3 From Semi-Deterministic Büchi to Deterministic Muller
From the semi-deterministic Büchi automaton we now build a deterministic Muller automa-
ton. The idea of the construction is to continuously simulate, in the deterministic automaton,
the nondeterministic part of the semi-deterministic automaton and to ”attempt” a transition
into the deterministic part whenever possible. In the state of the deterministic automaton
we maintain an ”array” of states that correspond to these attempts. Along each run of the
automaton, there may of course be infinitely many such attempts; we only need a finite
array, however, because we do not need to keep track of two different attempts to enter
the deterministic part, if they both reach the same state (in this case, we simply track the
attempt that entered the deterministic part earlier). We use an array of size 2m, where m is
the number of states of the deterministic part. The factor two allows us to leave a position
of the array empty (” ”) if an attempt is not continued. This is necessary to distinguish a
situation where a previously started attempt failed and, at the same time, a new attempt
enters the deterministic part, from the situation where the same attempt ran continuously.
The deterministic automaton accepts if there is at least one attempt that runs forever after
some point and reaches an accepting state infinitely often.

Construction 6.6. Let A = (Σ, Q, I, T,büchi(F)) be a complete semi-deterministic
Büchi automaton with Q = N]D and m = |D|, and let < be some arbitrary order on D.
We construct the deterministic Muller automaton A′ = (Σ, Q′, {q′0}, I ′, T ′,muller(F))
with L(A′) = L(A) as follows:

• Q′ = 2N × ({0, . . . , 2m} → (D ∪ { }))

• q′0 = (N ∩ I, (d1, d2, . . . , dn, , . . . ,)),
where di < di+1, {d1, . . . , dn} = D ∩ I}.

• T ′ = {((N1, f1), σ, (N2, f2)) |
N2 = pr2(T ∩N1 × {σ} ×N), D′ = pr2(T ∩N1 × {σ} ×D)

g1(n) =
{

if f1(n) =

q if f1(n) σ−→ q

g2: insort the elements of D′ in the empty slots of g1 (using <)
f2: delete every recurrence, leaving an empty () slot

• F = {F ′ ⊆ Q′ | ∃i ∈ 1, . . . , 2m s.t.
f(i) 6= for all (N ′, f) ∈ F ′ and
f(i) ∈ F for some (N ′, f) ∈ F ′}.

30

Lemma 6.2. For every semi-deterministic Büchi automaton A there exists a deter-
ministic Muller automaton A′ with L(A′) = L(A).

Proof. We show that the Büchi automaton A′ of Construction 6.6 and A are equivalent.
L(A) ⊆ L(A′): Let α ∈ L(A), and let r = n0 . . . nj−1djdj+1dj+2 . . . be an accepting run

of A on α where nk ∈ N for k < j and dk ∈ D for k ≥ j. Let r′ = (N0, f0)(N1, f1) . . . be
the run of A′ on α.

We have that nk ∈ Nk for all k < j, and for all k ≥ j, dk = fk(i) for some i ≤ 2m.
The index i such that dk = fk(i) may change during the run, but will never increase,
and will, therefore, eventually stabilize. For this stable i, we have that f(i) 6= for all
(N ′, f) ∈ Inf(r′) and f(i) ∈ F for some (N ′, f) ∈ Inf(r′). Hence, Inf(r′) ∈ F .
L(A′) ⊆ L(A): Let α ∈ L(A′), and let r′ = (N0, f0)(N1, f1) . . . be the accepting run of

A′ on α. We pick an index i ∈ {0, . . . 2m} and an accepting subset F ′ ∈ F s.t. f(i) 6= for
all (N ′, f) ∈ F ′ and f(i) ∈ F for some (N ′, f) ∈ F ′. We furthermore pick an index j ∈ N
such that fn(i) 6= for all n > j. There is a run

r = q0q1 . . . qjfj+1(i)fj+2(i)fj+3(i) . . .

of A on α. The run is accepting.

Combining Lemmas 6.1 and 6.2, we obtain McNaughton’s theorem.

Theorem 6.5 (McNaughton’s Theorem (1966)). Every Büchi-recognizable language is
recognizable by a deterministic Muller automaton.

6.4 Safra’s Construction
Our two-step proof of McNaughton’s theorem provides a construction of a deterministic
Muller automaton with a doubly exponential number of states (in the number of states of
the nondeterministic Büchi automaton). The second exponent can be avoided by a smart
combination of the two steps due to Shmuel Safra. In Safra’s construction, the states of
the Muller automaton are finite trees (known as Safra trees), which satisfy the following
conditions:

• Each node of the tree is labeled with a set of states of the Büchi automaton, called
the macrostate of the node.

• The macrostates of siblings are disjoint.

• The union of the macrostates of a set of sister nodes is a proper subset of the macrostate
of their parent.

• Each node has a unique name in {1, . . . , 2|Q|}, where Q are the states of the Büchi
automaton. The root is named 1.

• Each node may be marked with an !.

In Construction 6.6, the states of the Muller automaton consist of two components (N ′, f),
the set N ′ ⊆ N of reachable states (where N are states of the nondeterministic part
from Construction 6.5, i.e., the states of the original Büchi automaton) and the mapping
f : {0, . . . , 2m} → (D ∪ { }) assigning states from the set D of the deterministic part to
certain numbers. Safra’s construction implements Construction 6.6 in the sense that N ′ is
the macrostate of the root, and the states from D are also represented as macrostates of

31

nodes of the tree, which have numbers as unique names. (The precise numbering in Safra’s
construction differs slightly from the numbering in Construction 6.6).

In Construction 6.5, the states D of the deterministic part consist of pairs (L1, L2) of
sets of states, where L1 tracks the set of states that are reachable from the state in which
the deterministic part was entered, and L2 tracks the states that are reachable on some path
through an accepting state. In Safra’s construction, set L1 appears as the macrostate of a
node, set L2 is distributed over the children of the node: each child tracks the states reached
through a visit to accepting states at a particular position of the word. The situation that
L1 and L2 become equal, i.e., an accepting state of the semi-deterministic automaton of
Construction 6.5 is reached, is identified in Safra’s construction by marking the node with
the macrostate L1 with an !. As in Construction 6.6, the accepting subsets of the Muller
automaton identify particular numbers (here ”names”) that are present in all states of the
accepting subset (and thus come from the same run) and that correspond to an accepting
state from D in at least one state.

Safra’s construction thus cleverly distributes the states of D over the tree, while still be-
ing able to recognize an accepting situation. The final trick of the construction is to ensure
that the tree remains small, i.e., that the small selection {1, . . . , 2|Q|} of names for the nodes
is actually enough. This is ensured through two clean-up operations in the tree, called the
horizontal merge and the vertical merge. The horizontal merge removes any state from a
macrostate (and the macrostate of all descendants) if the state appears in the macrostate of
an older sibling. This corresponds to the deletion of recurrences in Construction 6.6. The
vertical merge removes the descendants of a node when the macrostate becomes equal to
the union of the macrostates of the children. In this case, an accepting state of the semi-
deterministic automaton has been reached; if this continues to happen infinitely often, the
run is accepting, and it is not necessary to analyze the states of the macrostate in more detail.

Construction 6.7. For a Büchi automaton A = (Σ, Q, I, T,büchi(F)), we construct
the deterministic Muller automaton A′ = (Σ, Q′, {q′0}, I ′, T ′,muller(F)) with L(A′) =
L(A) as follows:

• Q′ is the set of Safra trees.

• q′0 is the Safra tree with a single (unmarked) node with macrostate I and name 1.

• T ′ consists of the transitions that carry out the following steps:

1. All marks ! are removed.
2. For every node with macrostate M , a new child with new macrostate
M ′ = pr2(T ∩M × {σ} × F), is created. The new nodes get fresh names
(in a predefined fashion).

3. The macrostate M of old nodes is updated to M ′ = pr2(T ∩M × {σ} ×Q).
4. (horizontal merge): For every node with macrostate M and q ∈ M , remove
q from the macrostate of all younger siblings and their descendants.

5. All nodes with empty macrostate are removed.
6. (vertical merge): For every node n whose macrostate equals the union of the

macrostates of its children:
(a) all its descendants are removed, and
(b) the node n is marked with an !.

• F = {F ′ ⊆ Q′ | ∃i ∈ {1, . . . , 2|Q|} s.t. a node named i is in all Safra trees in F ′,
and the node named i is marked with an ! in some Safra tree in F ′}.

32

The correctness proof of Safra’s construction follows the ideas of the proofs of Lemma 6.1 and
Lemma 6.2. We therefore skip this proof here and instead conclude with a small example.

Example 6.4. Consider the following nondeterministic Büchi automaton over Σ = {a, b}:

A B C

a, b

a

a

b

a, b

Safra’s construction results in the following Muller automaton:

1−A
1−A,B

2−B

1−A,B

2−B!

1−A,C

2− C

1−A,B,C

2− C 3−B

1−A,B,C

2− C 3−B!

b

a a

b

a

b

b

a
b

a

a

b

The accepting subsets consist of all subsets that include the state where node 2 is marked
and possibly other states where node 2 is present, and all subsets that include the state
where node 3 is marked and possibly some other states where node 3 is present.

33

34

7 Logics over Infinite Sequences

7.1 Linear-time Temporal Logic (LTL)
Linear-time temporal logic (LTL) is a popular logic for the specification of reactive systems.
For a given set AP of atomic propositions, formulas of the logic define sets of infinite words
over the alphabet 2AP . Typically, the atomic propositions refer to the interface of a system
or a component, such as (a boolean representation of) the input and output variables, and
the words defined by the formula correspond to executions of the system that are considered
correct (cf. Section 1.1). The syntax of LTL is constructed from atomic propositions, the
boolean connectives of propositional logic, and the temporal operators and U . In practice,
U is often replaced by the derived temporal operators and .

• Propositional logic

– p ∈ AP atomic proposition
– ¬ϕ and ϕ ∧ ψ negation and conjunction

• Temporal operators

– ϕ next state fulfills ϕ
– ϕ U ψ ϕ holds until a ψ-state is reached

• Derived operators

– ϕ ≡ true U ϕ “some time in the future”
– ϕ ≡ ¬ ¬ϕ “from now on forever”

An LTL formula ϕ over AP defines the following language over the alphabet 2AP :

L(ϕ) =
{
α ∈

(
2AP)ω | α |= ϕ

}
,

where |= is the smallest relation satisfying:

α |= p iff p ∈ α(0) (i.e., α(0) |= p)
α |= ϕ1 ∧ ϕ2 iff α |= ϕ1 and α |= ϕ2

α |= ¬ϕ iff α 6|= ϕ

α |= ϕ iff α[1,∞] = α(1)α(2)α(3) . . . |= ϕ

α |= ϕ1 U ϕ2 iff ∃j ≥ 0. α[j,∞] |= ϕ2 and α[i,∞] |= ϕ1 for all 0 ≤ i < j

The following picture illustrates the semantics of the temporal operators.

a

a

arbitrary arbitrary arbitrary arbitrary

. . .

a

arbitrary a arbitrary arbitrary arbitrary

. . .

a U b
a ∧ ¬b a ∧ ¬b a ∧ ¬b b arbitrary

. . .

a

¬a ¬a ¬a a arbitrary

. . .

a

a a a a a
. . .

35

Typical examples of properties expressible in LTL are ”infinitely often p” (p) and
”finitely often p” (¬p). Not all ω-regular language can, however, be defined in LTL.
For example, the language (∅∅)∗{p}ω, i.e., ”an arbitrary but even sequence of ∅ symbols,
followed by an infinite sequence of p symbols”, cannot be defined in LTL. This language is
an example of a counting language. LTL can only define non-counting languages.

Definition 7.1. A language L ⊆ Σω is non-counting iff

∃n0 ∈ N. ∀n ≥ n0. ∀v, w ∈ Σ∗, α ∈ Σω. vwnα ∈ L ⇔ vwn+1α ∈ L.

Example 7.1. The language L = (∅∅)∗{p}ω is counting. For every ∅n{p}ω ∈ L, but
∅n+1{p}ω 6∈ L.

Theorem 7.1. For every LTL-formula ϕ, L(ϕ) is non-counting.

Proof. We prove the theorem by structural induction on ϕ:

Case ϕ = p:
We choose n0 = 1.

Case ϕ = ϕ1 ∧ ϕ2:
By induction hypothesis, ϕ1 defines non-counting language with threshold n′0 ∈ N, ϕ2
with n′′0 . We choose n0 = max{n′0, n′′0}.

Case ϕ = ¬ϕ1:
We choose n0 = n′0, where n′0 is the threshold of L(ϕ1).

Case ϕ = ϕ1:
We choose n0 = n′0 + 1, where n′0 is the threshold of L(ϕ1). We show for n ≥ n0 that
vwnα |= ϕ if and only if vwn+1α |= ϕ:

Case v 6= ε: Thus, v = av′ for some a ∈ Σ, v′ ∈ Σ∗. We have that
av′wnα |= ϕ

iff v′wnα |= ϕ

iff v′wn+1α |= ϕ (induction hypothesis)
iff av′wn+1α |= ϕ.

Case v = ε: Thus, w = aw′ for some a ∈ Σ, w′ ∈ Σ∗. It follows that
(aw′)nα |= ϕ

iff (aw′)(aw′)n−1α |= ϕ

iff w′(aw′)n−1α |= ϕ

iff w′(aw′)nα |= ϕ (induction hypothesis)
iff (aw′)n+1α |= ϕ.

Case ϕ = ϕ1 U ϕ2:
We choose n0 = max{n′0, n′′0} + 1, where n′0 is the threshold of L(ϕ1) and n′′0 is the
threshold of L(ϕ2). We show that for n ≥ n0 it holds that vwnα |= ϕ1 U ϕ2 if and
only if vwn+1α |= ϕ1 U ϕ2.
“⇒”: By the semantics of U , we have by vwnα |= ϕ1 U ϕ2, that there is a j such that
vwnα[j,∞] |= ϕ2 and for all i < j, vwnα[i,∞] |= ϕ1. Let j be the least such index.

36

Case j ≤ |v|:
By induction hypothesis, vwn+1α[j,∞] |= ϕ2 and for i < j, vwn+1α[i,∞] |= ϕ1.

Case j > |v|:
We have that vwn+1α[j + |w|,∞] |= ϕ2, because vwn+1α has the same suffix
from position j + |w| as vwnα from position j. Analogously, for each position
|v| + |w| ≤ i < j + |w|, we have that vwn+1α[i,∞] |= ϕ1. Thus, by induction
hypothesis, for all i < |v| + |w| with i < j we get that vwwnα[i,∞] |= ϕ1, since
vwwn−1α[i,∞] |= ϕ1.

“⇐” By the semantics of U , we have that vwn+1α |= ϕ1 U ϕ2 implies that there is a j
such that vwn+1α[j,∞] |= ϕ2 and ∀i < j. vwn+1α[i,∞] |= ϕ1.

Case j ≤ |v|+ |w|:
By induction hypothesis, vwwn−1α[j,∞] |= ϕ2 and for i < j, vwwn−1α[i,∞] |= ϕ1.

Case j > |v|+ |w|:
Since vwnα has the same suffix from position j − |w| as vwn+1α from position
j, we have that vwnα[j − |w|,∞] |= ϕ2. Analogously, for all positions |v| +
|w| ≤ i < j it holds that vwnα[i,∞] |= ϕ1. By induction hypothesis, for all
i < |v|+ |w|. vwwn−1α[i,∞] |= ϕ1, because vwwnα[i,∞] |= ϕ1.

7.2 Quantified Propositional Temporal Logic (QPTL)
Theorem 7.1 shows that LTL cannot express all ω-regular languages. We repair this defi-
ciency by adding quantification over propositions. QPTL formulas over a set AP of atomic
propositions are generated by the following grammar, where p ∈ AP:

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ | ψ | ∃p. ψ

The QPTL connectives have the same semantics as in LTL, except for propositional quan-
tification:

α |= ∃p.ψ iff there exists α′ ∈ (2AP)ω such that α =APr{p} α
′ and α′ |= ψ ,

where α =P α
′ for some P ⊆ AP iff, for all i ∈ N, α(i) ∩ P = α′(i) ∩ P .

An occurrence of an atomic proposition is called free if it is not in the scope of a quantifier,
and bound otherwise. The set of free atomic propositions AP ′ ⊆ AP consists of those atomic
propositions that have a free occurrence. The language of a QPTL formula ϕ is a language
over the alphabet 2AP′ : L(ϕ) =

{
α ∈

(
2AP′

)ω
| α |= ϕ

}
.

Example 7.2. The language L = (∅∅)∗{p}ω from Example 7.1 is QPTL-definable:
∃q. (q ∧ (q ↔ ¬ q) ∧ (p→ p) ∧ (p→ (p ∨ ¬q))) ∧ p

In fact, it is exactly the ω-regular languages that can be expressed in QPTL. The following
theorem translates a given Büchi automaton with alphabet 2AP into a QPTL formula that
defines the language of the automaton. We postpone the proof that, vice versa, there is a
Büchi automaton for every QPTL formula, to a little bit later.

Theorem 7.2. For every Büchi automaton A over Σ = 2AP there exists a QPTL
formula ϕA such that L(ϕ) = L(A).

Proof. For a Büchi automaton A = (2AP , Q, I, T,büchi(F)), we define a QPTL formula ϕA
with L(ϕA) = L(A). Let Q = {q1, q2, . . . , qn}; we introduce an auxiliary proposition atq for
each state q ∈ Q. Then ϕA is defined as follows:

37

ϕA := ∃atq1 , . . . , atqn .
∨
q∈I

atq

∧

 ∨
(q,A,q′)∈T

atq ∧ atq′ ∧

∧
p∈A

p

 ∧
 ∧
p∈APrA

¬p


∧

 n∧
i=1

∧
j 6=i
¬(atqi

∧ atqj
)


∧

∨
q∈F

atq

7.3 Monadic Second-Order Logic of One Successor (S1S)
Temporal logics like LTL and QPTL refer to the positions of the input word implicitly
through the temporal operators. We now introduce a logic that allows us to manipulate
positions directly, though variables that store positions (first-order variables) or sets of
positions (second-order variables) and through a successor operation S. The logic is called
Monadic Second-Order Logic of One Successor, where monadic means that the second-order
quantification is restricted to unary relations, i.e., sets, and one successor means that we only
have a single successor operation. Later in the course, we will study monadic second-order
logics of two or more successors, which allow us to describe trees rather than words.

Let V1 = {x, y, . . .} be a set of first-order variables and V2 = {X,Y, . . .} a set of second-
order variables. Then the terms of S1S are defined by the following grammar:

t ::= 0 | x | S(t)

The formulas of S1S are defined by the following grammar:

ϕ ::= t ∈ X | t = t | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ ,

where x ∈ V1 is a first-order variable and X ∈ V2 is a second-order variable. Additionally,
we allow the usual boolean connectives and introduce the following abbreviations:

• ∀X. ϕ := ¬∃X. ¬ϕ • ∀x. ϕ := ¬∃x. ¬ϕ

• x 6∈ Y := ¬(x ∈ Y) • x 6= y := ¬(x = y)

The semantics of an S1S formula is given relative to a valuation of the variables. A first-
order valuation is a function σ1 : V1 → N that assigns to each first-order variable a natural
number. A second-order valuation is a function σ2 : V2 → 2N that assigns to each second-
order variable a set of natural numbers. The value of a term is then defined as follows:

• [0]σ1 = 0

• [x]σ1 = σ1(x)

• [S(t)]σ1 = [t]σ1 + 1

We again distinguish free and bound occurrences of a variable, and identify the subsets
V ′1 ⊆ V1 and V ′2 ⊆ V2 of free first-order and free second-order variables, respectively. An
S1S formula ϕ defines the following language over the alphabet 2V ′1∪V ′2 :

L(ϕ) = {ασ1,σ2 ∈ (2V
′

1∪V
′

2)ω | σ1, σ2 |= ϕ},

where x ∈ ασ1,σ2(j) iff j = σ1(x), and X ∈ ασ1,σ2(j) iff j ∈ σ2(X), and |= is the smallest
relation that satisfies the following:

38

• σ1, σ2 |= t ∈ X iff [t]σ1 ∈ σ2(X)

• σ1, σ2 |= t1 = t2 iff [t1]σ1 = [t2]σ1

• σ1, σ2 |= ¬ψ iff σ1, σ2 6|= ψ

• σ1, σ2 |= ψ0 ∨ ψ1 iff σ1, σ2 |= ψ0 or σ1, σ2 |= ψ1

• σ1, σ2 |= ∃x. ϕ iff there is an a ∈ N s.t.

σ′1(y) =
{
σ1(y) if y 6= x
a otherwise

and σ′1, σ2 |= ϕ.

• σ1, σ2 |= ∃X. ϕ iff there is an A ⊆ N s.t.

σ′2(Y) =
{
σ2(Y) if Y 6= X
A otherwise

and σ1, σ
′
2 |= ϕ

Example 7.3. We give a few example formulas that are often useful to define more com-
plicated properties.

X ⊆ Y :≡ ∀z. (z ∈ X → z ∈ Y);
X = Y :≡ X ⊆ Y ∧ Y ⊆ X;
Suff (X) :≡ ∀y. (y ∈ X → S(y) ∈ X);
x ≤ y :≡ ∀Z. (x ∈ Z ∧ Suff (Z))→ y ∈ Z;
Fin(X) :≡ ∃Y. (X ⊆ Y ∧ (∃z. z 6∈ Y) ∧ (∀z. (z 6∈ Y → S(z) 6∈ Y)));

We already showed, in Theorem 7.2, that every Büchi-recognizable language is QPTL-
definable. We now complete a full circle by showing that every QPTL-definable language is
S1S-definable, and that every S1S-definable language is Büchi-recognizable. Hence, QPTL,
S1S, and Büchi automata are equally expressive.

Theorem 7.3. Every QPTL-definable language is S1S-definable.

Proof. For every QPTL-formula ϕ over AP and every S1S-term t, we define a S1S formula
T (ϕ, t) with V2 = AP such that, for all α ∈ (2AP)ω,

α[[t]σ1 ,∞] |=QPTL ϕ iff σ1, σ2 |=S1S T (ϕ, t),

where σ2 : P 7→ {i ∈ N | P ∈ α(i)}.

• T (P, t) = t ∈ P , for P ∈ AP

• T (¬ϕ, t) = ¬T (ϕ, t)

• T (ϕ ∧ ψ, t) = T (ϕ, t) ∧ T (ψ, t)

• T (ϕ, t) = T (ϕ, S(t))

• T (ψ, t) = ∃x.(x ≥ t ∧ T (ψ, x))

• T (∃P. ϕ, t) = ∃P. T (ϕ, t)

The language of ϕ is then defined by the S1S formula T (ϕ, 0).

39

To prepare for the proof that every S1S-definable language is Büchi-recognizable, we show in
the following lemma that we can focus on a restricted sublogic, called S1S0, which is defined
by the following grammar:

ϕ ::= 0 ∈ X | x ∈ Y | x = 0 | x = y | x = S(y) | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ

In S1S0, we only allow variables and 0 in membership tests, and variables, 0, and a single
application of the successor operation in equalities. A formula that has more complex terms
in such expressions can be simplified by introducing additional variables.

Lemma 7.1. For every S1S formula ϕ there is an S1S0 formula ϕ′ such that
L(ϕ) = L(ϕ′).

Proof. We rewrite a given S1S formula ϕ into the S1S0 formula ϕ′ using the following rewrite
rules:

S(t) ∈ X 7→ ∃y. y = S(t) ∧ y ∈ X
0 = x 7→ x = 0 0 = 0 7→ ∃Y. 0 ∈ Y ∨ 0 /∈ Y

S(t) = 0 7→ 0 = S(t) 0 = S(t) 7→ ∃y. y = S(t) ∧ y = 0
S(t) = x 7→ x = S(t) t = S(0) 7→ ∃x. x = 0 ∧ t = S(x)

S(t) = S(t′) 7→ t = t′ t = S(S(t′)) 7→ ∃y. y = S(t′) ∧ t = S(y)

Theorem 7.4. Every S1S-definable language is Büchi-recognizable.

Proof. Let ϕ be an S1S-formula. We construct a Büchi automaton A with L(ϕ) = L(A).
We begin by translating ϕ into an equivalent S1S0 according to Lemma 7.1 and by renam-
ing bound variables to obtain unique variables. The Büchi automaton is then constructed
inductively as follows.

• 0 ∈ X:

{A | X ∈ A}

Σ

• x ∈ Y : {A | x /∈ A}

{A | {x, Y } ⊆ A}

{A | x /∈ A}

• x = 0:

{A | x ∈ A}

{A | x /∈ A}

• x = y: {A | {x, y} ∩A = ∅}

{A | {x, y} ⊆ A}

{A | {x, y} ∩A = ∅}

40

• x = S(y):

{A | {x, y} ∩A = ∅}

{A | y ∈ A} {A | x ∈ A}

{A | {x, y} ∩A = ∅}

• ϕ ∨ ψ: let Aϕ and Aψ be the automata constructed for ϕ and ψ, respectively. We
obtain the automaton for ϕ ∨ ψ by constructing the automaton that recognizes the
union of L(Aϕ) and L(Aψ).

• ¬ϕ: let Aϕ be the automaton constructed for ϕ. We obtain the automaton for ¬ϕ by
constructing the automaton that recognizes the complement of L(Aϕ).

• ∃X. ϕ: letAϕ be the automaton constructed for ϕ. We obtain the automaton for ∃X. ϕ
by eliminating X from the input alphabet, i.e., we replace each transition (q, A, q′) by
(a,A \ {X}, q′).

• ∃x. ϕ: as for ∃X. ϕ, except that before the elimination of x, we intersect with the
language of the following automaton Ax, which ensures that x appears exactly once:

{A | x /∈ A}

{A | x ∈ A}

{A | x /∈ A}

As the final step, we intersect with Ax for each free first-order variable x.

7.4 Weak Monadic Second-Order Logic of One Successor (WS1S)
Weak monadic second-order logic of one successor (WS1S) differs from S1S in that the
second-order variables refer to finite rather than general, possibly infinite sets. WS1S is often
used as a coding language for decidable verification problems, such as parametric hardware
or software with pointers. The MONA tool1 is an efficient BDD-based implementation of a
decision procedure for WS1S. The syntax of WS1S is the same as for S1S; the semantics is
the same except for quantification:

• σ1, σ2 |= ∃X. ϕ iff there is a finite A ⊆ N s.t.

σ′2(Y) =
{
σ2(Y) if Y 6= X

A otherwise

and σ1, σ
′
2 |= ϕ.

The following theorem shows that the restriction to finite sets does not affect the expres-
siveness of the logic.

Theorem 7.5. A language is WS1S-definable iff it is S1S-definable.

1http://www.brics.dk/mona

41

http://www.brics.dk/mona

Proof. “⇒”: We use formula Fin(X) from Example 7.3 to express that a set X is finite.
A WS1S formula is translated into an equivalent S1S formula by replacing each quantified
subformula ∃Xϕ with ∃X. Fin(X) ∧ ϕ.

“⇐”: Let ϕ be an S1S-formula, let V1 and V2 be the free first-order and second-order
variables of ϕ, respectively. By Theorem 7.4, there is a Büchi automaton Aϕ with L(Aϕ) =
L(ϕ), and, by McNaughton’s Theorem, a deterministic Muller automaton A′ϕ with L(A′ϕ) =
L(Aϕ). By the characterization of deterministic Muller languages (Theorem 6.4), L(A′) is
a boolean combination of languages −→W , where W is a regular language. For each such
regular language W , recognizable by a finite-word automaton A = (Σ, Q, I, T, F), where
Q = {q1, q2, . . . , qn}, we define a WS1S formula ψW (y) over V ′1 = V1 and V ′2 = V2 ∪
{Atq1 , . . . ,Atqn} that defines the words whose prefix up to position y is in W :

ψW (y) := ∃Atq1 , . . . ,Atqn .
∨
q∈I

(0 ∈ Atq)

∧ ∀x. x < y →

(∨
(qi,A,qj)∈T

(
x ∈ Atqi

∧ S(x) ∈ Atqj
∧

∧
P∈A∩V2

x ∈ P ∧
∧

P∈V2rA
x /∈ P

∧
∧

p∈A∩V1

x = p ∧
∧

p∈V1rA
x 6= p

))

∧ ∀x. x ≤ y →

(∧
i 6=j
¬
(
x ∈ Atqi

∧ x ∈ Atqj

))
∧
∨
qi∈F

y ∈ Atqi

The WS1S formula ϕ−→
W

: = ∀x. ∃y. (x < y ∧ ψW (y)) then defines the words in −→W . Hence,
L(ϕ) is WS1S-definable.

42

8 Alternating Büchi Automata
Logics are often significantly more concise than automata. For example, in the translation
from S1S to Büchi automata in the proof of Theorem 7.4, each negation increases the size
of the Büchi automaton exponentially, resulting in a non-elementary number of states. The
blow-up when translating LTL formulas is less dramatic, but still exponential. In this section,
we show that the conciseness of the logic and the automata can be brought closer together
when the automata are equipped with both nondeterministic and universal choices.

8.1 Alternating Automata
A nondeterministic choice requires that the suffix of an input word is accepted by some
successor state. Dually, a universal choice requires that the suffix of an input word is
accepted by all successor states. In an alternating automaton, we allow for both types
of choices by defining, for each state and input letter, a positive Boolean formula over the
successor states: disjunction expresses nondeterministic choice, conjunction universal choice.

Definition 8.1. The positive Boolean formulas over a set X, denoted B+(X), are the
formulas built from elements of X, conjunction ∧, disjunction ∨, true and false.

A set Y ⊆ X satisfies a formula ϕ ∈ B+(X), denoted Y |= ϕ, iff the truth assignment that
assigns true to the members of Y and false to the members of X \ Y satisfies ϕ.

Definition 8.2. An alternating automaton over infinite words A is a tuple
A = (Σ, Q, q0, δ,Acc), where:

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× Σ→ B+(Q) is the transition function, and

• Acc ⊆ Qω is an accepting condition.

For alternating automata, runs generalize from sequences to trees. A tree T over a set of
directions D is a prefix-closed subset of D∗. The empty sequence ε is called the root. The
children of a node n ∈ T are the nodes children(n) = {n · d ∈ T | d ∈ D}. A Σ-labeled tree
is a pair (T , `), where ` : T → Σ is the labeling function.

Definition 8.3. A run of an alternating automaton on a word α ∈ Σω is a Q-labeled
tree (T , r) with the following properties:

• r(ε) = q0 and

• for all n ∈ T , if r(n) = q, then {r(n′) | n′ ∈ children(n)} satisfies δ(q, α(|n|)).

Example 8.1. The following alternating Büchi automaton recognizes the language L =
({a, b}∗b)ω. The transition function is given as follows: δ(p, a) = p∧q, δ(p, b) = p, δ(q, a) = q,
and δ(q, b) = true. We depict universal choice by connecting the edges with a small arc.

p q true

b

a

a

b

43

On the input word α = (aab)ω, our automaton produces the following run. Note that, in
general, an alternating automaton may also have more than one run on a particular word,
or no run at all. We use a dotted line to indicate that the subtree repeats infinitely often.

ε : p

0: p

00: p

000: p

01: q

1: q

10: q

To determine if a run of an alternating automaton is accepting, we apply the acceptance
condition to all infinite branches of the run tree. A branch of a tree T is a maximal sequence
of words n0n1n2 . . . such that n0 = ε and ni+1 is a child of ni for i ≥ 0.

Definition 8.4. A run (T , r) is accepting iff, for every infinite branch n0n1n2 . . .,

r(n0)r(n1)r(n2) . . . ∈ Acc.

8.2 From LTL to Alternating Automata
It is usually much simpler to translate a logical formula into an alternating automaton
than into a nondeterministic automaton. We illustrate this with the translation of LTL
formulas into equivalent alternating Büchi automata. The states are simply the subformulas
of the given formula and their negations (this set is called the closure of the formula). The
transition function is derived from the expansition laws of the logic. For example, an Until
formula ψ1 U ψ2 holds if ψ2 holds or if ψ1 holds and the entire formula holds in the next
step. The boolean formula produced by the transition function from the state ψ1 U ψ2 is
therefore a disjunction between the transition function for ψ2 and a conjunction between
the transition function for ψ1 and the state ψ1 U ψ2.

Construction 8.1. Let ϕ be an LTL formula. We construct the alternating Büchi
automaton Aϕ = (Σ, Q, ϕ, δ,büchi(F)) using:

• Q = closure(ϕ) := {ψ,¬ψ | ψ is subformula of ϕ}

• δ(p, a) =
{

true if p ∈ a • δ(true, a) = true
false if p /∈ a • δ(false, a) = false

• δ(¬ψ, a) = δ(ψ, a)

• δ(ψ1 ∧ ψ2, a) = δ(ψ1, a) ∧ δ(ψ2, a) • δ(ψ1 ∨ ψ2, a) = δ(ψ1, a) ∨ δ(ψ2, a)

• δ(ψ, a) = ψ • δ(ψ1 U ψ2, a) = δ(ψ2, a) ∨ (δ(ψ1, a) ∧ ψ1 U ψ2)

• F = {¬(ψ1 U ψ2) ∈ closure(ϕ)}

where we define · for ψ,ψ1, ψ2 ∈ Q via

• ψ = ¬ψ • ¬ψ = ψ • ψ1 ∧ ψ2 = ψ1 ∨ ψ2 • ψ1 ∨ ψ2 = ψ1 ∧ ψ2

• true = false • false = true

44

Theorem 8.1. For every LTL formula ϕ, there is an alternating Büchi automaton Aϕ
with L(Aϕ) = L(ϕ).

Proof. For a subformula ψ of ϕ let Aψϕ be the automaton Aϕ from Construction 8.1 with
initial state ψ. We prove, by structural induction on ψ, that L(Aψϕ) = L(ψ).

8.3 Translating Alternating to Nondeterministic Automata
The translation from alternating to nondeterministic automata is based on a representation
of runs as directed acyclic graphs (DAGs). The idea is similar to the DAG representation we
used in the complementation construction for nondeterministic Büchi automata in Section 5.
There the DAG was used to represent the set of all runs of the nondeterministic automaton.
The complement automaton would then ”guess” the DAG level-by-level.

Here, the DAG is used to represent the branches of a (single) run of the alternating
automaton. The idea is illustrated in the following example.

Example 8.2. The following is a run tree of an automaton with two states p and q and its
representation as a DAG.

p

p

p

p q

q

q

q

q

q

(p, 0)

(p, 1)

(p, 2)

(q, 1)

(q, 2)

Definition 8.5. A run DAG of an alternating Büchi automaton A on an infinite word
α is a DAG (V,E), with V ⊆ Q× N and (q0, 0) ∈ V , where

• E ⊆
⋃
i∈N(Q× {i})× (Q× {i+ 1})

• ∀(q, i) ∈ V . ∃Y ⊆ Q s.t.
Y |= δ(q, α(i)), Y × {i+ 1} ⊆ V and {(q, i)} × (Y × {i+ 1}) ⊆ E.

A run DAG is accepting if every infinite path has infinitely many visits to F × N.
Our construction of the nondeterministic automaton will be based on run DAGs rather

than trees. It is important to note, however, that not every run tree can be represented as
a DAG. This is illustrated by the following example:

Example 8.3. The following run tree cannot be represented as a DAG, because there are
two nodes on the third level that are both labeled with q that differ, however, in the labeling
of their children.

p

p

p

p q

q

p

q

q

q

45

We call two nodes x1, x2 ∈ T in a run tree (T , r) similar if |x1| = |x2| and r(x1) = r(x2).
Run trees where the subtrees starting in similar nodes have the same labels are called mem-
oryless. Memoryless run trees can be represented as DAGs.

Definition 8.6. A run tree (T , r) is memoryless if for all similar nodes x1 and x2 and
for all y ∈ D∗ we have that (x1 · y ∈ T iff x2 · y ∈ T) and r(x1 · y) = r(x2 · y).

The following theorem shows that whenever there is an accepting run tree, there is also an
accepting run tree that is memoryless. Hence, the existence of a memoryless run tree, or,
equivalently, the existence of an accepting run DAG, is a necessary (and sufficient) criterion
for the acceptance of some word.

Theorem 8.2. If an alternating Büchi automaton A accepts a word α, then there exists
a memoryless accepting run of A on α.

Proof. Let (T , r) be an accepting run tree on α with directions D. We construct a memory-
less run tree (T ′, r′) by copying from (T , r). Inuitively, we pick, whenever there are multiple
occurrences of the same state in (T , r), the occurrence where the last visit to the accepting
states was the longest time ago. Formally, let γ : T → N be a function that measures the
number of steps since the last visit to F :

• γ(ε) = 0

• γ(n · d) =
{
γ(n) + 1 if r(n) /∈ F
0 otherwise

Based on γ, we define a mapping ∆: Q × N → T that assigns to each state and level a
unique tree node:

∆(q, n) = the leftmost y ∈ T with |y| = n s.t. r(y) = q

and ∀z ∈ T . |z| = n ∧ r(z) = q ⇒ γ(z) ≤ γ(y)

We now construct (T ′, r′) by copying from the nodes in (T , r) indicated by ∆:

• ε ∈ T ′ and r′(ε) = r(ε)

• for n ∈ T ′ and d ∈ D, we have that n · d ∈ T ′ if and only if ∆(r′(n), |n|) · d ∈ T and
r′(n · d) = r(∆(r′(n), |n|) · d)

It is easy to see that (T ′, r′) is a run ofA on α: The root is labeled by the initial state: r′(ε) =
r(ε) = q0. For n ∈ T ′, let qn = ∆(r′(n), |n|). Then, the set {r(qn · d) | d ∈ D, qn · d ∈ T }
satisfies δ(r(qn), α(|qn|)) and therefore {r′(n · d) | d ∈ D,n · d ∈ T ′} |= δ(r′(n), α(|n|)).

To prove that (T ′, r′) is accepting we first show that, for every n ∈ T ′, it holds that
γ(n) ≤ γ(∆(r′(n), |n|)). This is shown by induction on the length of n:

• for n = ε we have that γ(n) = 0

• for n = n′ · d (where d ∈ D) we have:

– if r(n′) ∈ F , then γ(n) = 0
– if r(n′) 6∈ F , then

γ(∆(r′(n′ · d), |n′ · d|))
Def. ∆
≥ γ(∆(r′(n′), |n′|) · d) Def. γ= 1 + γ(∆(r′(n′), |n′|))
IH
≥ 1 + γ(n′) Def. γ= γ(n′ · d)

46

Suppose now that (T ′, r′) is not accepting. Then there is an infinite branch n0, n1, n2, . . . in
T ′ and ∃k ∈ N such that ∀j ≥ k. r′(nj) /∈ F . Let mi = ∆(r′(ni), |ni|) for i ≥ k. We have,

γ(nk) < γ(nk+1) < . . .

/
∧

/
∧

γ(mk) < γ(mk+1) < . . .

So, for any j ≥ k it holds that γ(mk) ≥ j − k. Since T is finitely branching, there must be
a branch with an infinite suffix of non-F labeled positions. This contradicts our assumption
that (T , r) is accepting.

Corollary 8.1. A word α is accepted by an alternating Büchi automaton A if and only if
A has an accepting run DAG on α.

We are now ready to translate an alternating Büchi automaton into an equivalent nonde-
terministic Büchi automaton. The construction is due to Miyano and Hayashi (1984).

Construction 8.2. For an alternating Büchi automaton A = (Σ, Q, q0, δ,büchi(F)),
we construct a nondeterministic Büchi automaton A = (Σ, Q′, I ′, T ′,büchi(F ′)) with
L(A) = L(A′) as follows:

• Q′ = 2Q × 2Q

• I ′ = {({q0},∅)}

• T ′ = {((X,∅), σ, (X ′, X ′ \ F)) | X ′ |=
∧
q∈X δ(q, σ)} ∪

{((X,W), σ, (X ′,W ′ \ F)) |W 6= ∅,W ′ ⊆ X ′,
X ′ |=

∧
q∈X δ(q, σ), W ′ |=

∧
q∈W δ(q, σ)}

• F ′ = {(X,∅) |X ⊆ Q}

Theorem 8.3 (Miyano and Hayashi, 1984). For every alternating Büchi automaton A,
there exists a nondeterministic Büchi automaton A with L(A) = L(A′).

Proof. “L(A′) ⊆ L(A)”: Let α ∈ L(A′) with an accepting run

r′ = (X0,W0)(X1,W1)(X2,W2) . . .

where W0 = ∅ and X0 = {s0}. We construct the run DAG (V,E) for A on α:

• V = {(x, i) | i ∈ N, x ∈ Xi}

• E = {((x, i), (x′, i+ 1)) | i ∈ N, x ∈ Xi \Wi, x
′ ∈ Xi} ∪

{((x, i), (x′, i+ 1)) | i ∈ N, x ∈Wi, x
′ ∈ Xi+1 ∩ (F ∪Wi+1)}

First, we show that (V,E) is a run DAG: (q0, 0) ∈ V and for every (x, i) ∈ V : if x ∈ XirWi,
Xi+1 |= δ(x, α(i)); if x ∈ Wi, Xi+1 ∩ (F ∪Wi+1) |= δ(x, α(i)). The run DAG is accepting,
because every path through the run DAG visits F infinitely often (otherwise Wi = ∅ only
for finitely many i).

“L(A) ⊆ L(A′)”: Let α ∈ L(A) and (V,E) be an accepting run DAG of A on α. We
construct a run

r′ = (X0,W0)(X1,W1)(X2,W2) . . .

47

on A′ as follows:

• X0 = {q0} and W0 = ∅

• for i > 0, let Xi = {(x′, i) ∈ V | ((x, i− 1), (x′, i)) ∈ E, (x, i− 1) ∈ Xi−1} and

– if Wi = ∅ then Wi+1 = Xi+1 \ F ,
– otherwise, let Wi+1 = {x′ ∈ Q \ F | ∃(x, i) ∈ V, ((x, i), (x′, i+ 1)) ∈ E, x ∈Wi}.

Clearly, r′ is a run: it starts with ({q0},∅) and obeys T ′, since for x ∈ Xi rWi, we have
that Xi+1 |= δ(x, α(i)). Furthermore, for x ∈ Wi, Xi+1 ∩ (F ∪Wi+1) satisfies δ(x, α(i)).
The run r′ is accepting, because otherwise there is a path in (V,E) that rejects.

Example 8.4. We translate the following alternating automaton into an equivalent nonde-
terministic automaton:

p q true

a

b

a

b

⇓

{p},∅ {p, q}, {q} {p, q},∅

a

b

a

b

a, b

Corollary 8.2. A language is ω-regular if and only if it is recognizable by an alternating
Büchi automaton.

48

9 Infinite Games
We now introduce infinite two-player games on finite graphs. Infinite games are useful to
solve the synthesis problem, where we are interested in finding a strategy that guarantees
that a given specification is satisfied (cf. Section 1.2). As we will see, games also play a
fundamental role in automata theory, in particular for automata over infinite trees.

9.1 Basic Definitions
The game is played on a graph, called the arena. The vertices of the graph are called posi-
tions and are partitioned into the positions of Player 0 and the positions of Player 1. A play
of the game starts in some initial position, there, as well as in all subsequent positions, the
player who owns the position chooses the edge on which the play is continued. The winner
is determined by a winning condition, which, like the acceptance condition of an automaton
on infinite words is a subset of the infinite words over the positions. Player 0 wins if the
play is an element of the winning condition.

Definition 9.1. A game arena is a tuple A = (V, V0, V1, E), where

• V0 and V1 = V \ V0 are disjoint sets of positions, called the positions of Player 0
and Player 1,

• E ⊆ V × V is a set of edges such that every position v ∈ V has at least one
outgoing edge (v, v′) ∈ E.

Definition 9.2. A play is an infinite sequence ρ ∈ V ω such that

∀n ∈ N. (ρ(n), ρ(n+ 1)) ∈ E.

We say a play ρ starts in a position v iff v = ρ(0). We denote the set of all possible plays
on A with Plays(A) and the set of all possible plays starting in position v with Plays(A, v).

Definition 9.3. A game G = (A,Win) consists of an arena A and a winning condition
Win ⊆ V ω. We call a play ρ winning for Player 0 iff ρ ∈Win and winning for Player 1
otherwise.

A strategy fixes the decisions of a player based on the prefix of the play seen so far. We
call such a prefix the history of the play. A history that ends in a position of Player i is an
element of V ∗Vi. A strategy for Player i is a function σ : V ∗Vi → V that selects for each
such history a successor position.

Definition 9.4. A strategy for Player i is a function σ : V ∗Vi → V such that (v, v′) ∈ E
whenever σ(wv) = v′ for some w ∈ V ∗, v ∈ Vi.

In the following, we will use σ and τ to denote strategies for some Player i and the opponent
Player (1− i), respectively.

Definition 9.5. A play ρ is consistent with a strategy σ iff

∀n ∈ N . if ρ(n) ∈ Vi then ρ(n+ 1) = σ(ρ[n]).

49

We denote the set of all plays that begin in some position v and are consistent with strategy
σ with Plays(A, σ, v). Note that the strategies σ and τ of the two players together uniquely
identify a specific play: |Plays(A, σ, v) ∩ Plays(A, τ, v)| = 1.

Our definition of a strategy is very general in the sense that the decisions are based on
the entire history of the play. Intuitively, this means that the players have infinite memory.
It often suffices to work with simpler strategies, such as memoryless strategies. Memoryless
strategies are often also called positional.

Definition 9.6. A strategy σ for Player i is memoryless iff σ(wv) = σ(v) for all
w ∈ V ∗, v ∈ Vi.

In a slight abuse of notation, memoryless strategies are often given directly as a function
σ : Vi → V that maps the positions owned by Player i to their successor positions. Next,
we characterize winning strategies:

Definition 9.7. A strategy σ for Player i is winning from a position v if all plays that
start in v and that are consistent with σ are winning for Player i.

Note that this definition refers to a specific position v in which we start the play. The set
of all positions where the player has a winning strategy is called the winning region.

Definition 9.8. The winning region Wi(G) of Player i in a game G is defined as the set
of positions v ∈ V for which there exists a strategy for Player i that is winning from v.

Note that the strategies for different positions in the winning region may be different. If a
strategy σ is winning from all positions of the winning region, we call σ a uniform winning
strategy.

It is easy to see that no position can be in the winning regions of both players. Suppose
that there exists a position v and strategies σ and τ that are winning from v for Player 0
and 1, respectively. Then the unique play that is consistent with σ and τ would need to be
both in Win, because σ is winning, and not in Win, because τ is winning.

A more difficult question is whether all positions are in some winning region, i.e., whether
the winning regions form a partition of V . This property is called the determinacy of a game:

Definition 9.9. A game G is determined if V = W0(G) ∪W1(G).

If the winning strategies are in fact memoryless, we say that the game is memoryless (also:
positionally) determined.

Definition 9.10. A game is memoryless determined if for every position v ∈ V , there
exists a memoryless strategy that is winning for some player from position v.

9.2 Reachability Games
We will now analyze infinite games for various types of winning conditions. We start with the
simple reachability condition. The reachability condition is given as a set R of positions called
the reachability set. The reachability condition is satisfied if the play reaches some position
in R. Formally, for an infinite word α over Σ, we use Occ(α) := {σ ∈ Σ | ∃n ∈ N. α(n) = σ}
to denote the set of all letters occurring in α.

50

Definition 9.11. The reachability condition reach(R) on a set of positions R ⊆ V is
the set

reach(R) = {ρ ∈ V ω | Occ(ρ) ∩R 6= ∅}.

A game G = (A,Win) with Win = reach(R) is called a reachability game with reach-
ability set R.

Example 9.1. Consider the following reachability game G with R = {v4, v5}. We depict
positions of Player 0 as circles and positions of Player 1 as rectangles. Positions in R are
depicted with double lines.

v4

v1

v3 v5

v7

v0 v2

v6 v8

The winning region for Player 0 is W0(G) = {v3, v4, v5, v6, v7, v8}, as the following uniform
winning strategy σ shows: σ(v1) = v2, σ(v3) = v4, σ(v7) = v8, σ(v8) = v5.

Reachability games can be solved with a simple fixed point construction called the attractor
construction. The attractor construction computes the winning region for Player 0 by start-
ing with the reachability set and then iteratively adding all positions owned by Player 0 that
have an edge into the winning region, and all positions owned by Player 1 where all edges
lead into the winning region. This process is repeated until no more positions can be added.
In the following, we give a slightly more general definition of the attractor construction that
can be applied also to Player 1. We do this in preparation for the constructions for other
winning conditions, which will use the attractor construction as a subroutine.

Construction 9.1. Let an arena A = (V, V0, V1, E) be given. The attractor construc-
tion on A is defined for each Player i, for all n ∈ N and R ⊆ V as follows.

CPre i(R) = {v ∈ Vi | ∃v′ ∈ V. (v, v′) ∈ E ∧ v′ ∈ R}
∪ {v ∈ V1−i | ∀v′ ∈ V. (v, v′) ∈ E → v′ ∈ R}

Attr0
i (R) = R

Attrn+1
i (R) = Attrni (R) ∪ CPre i(Attrni (R))

Attr i(R) =
⋃
n∈N

Attrni (R)

Example 9.2. Consider again the reachability game G from Example 9.1. Using the at-
tractor construction, we solve the game as follows:

51

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0
0({v4, v5}) =
{v4, v5}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr1
0({v4, v5}) =

{v4, v5} ∪ {v3, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr2
0({v4, v5}) =

{v3, v4, v5, v8} ∪ {v3, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr3
0({v4, v5}) =

{v3, v4, v5, v7, v8} ∪ {v3, v6, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr4
0({v4, v5}) = Attr0({v4, v5}) =

{v3, v4, v5, v6, v7, v8}

In general, the attractor construction solves a game with winning condition reach(R) as
follows: W0(G) = Attr0(R), W1(G) = V r W0(G). We can furthermore give a uniform
memoryless winning strategy. These results are summarized in the following theorem.

Theorem 9.1. Reachability games are memoryless determined. It holds that W0(G) =
Attr0(R), W1(G) = V rW0(G). Both players have a uniform winning strategy.

Proof. We show for all positions v ∈ V that

• if v ∈ Attr0(R), then v ∈W0(G), with the following uniform memoryless strategy σ:
We fix an arbitrary total ordering on V . For v ∈ (Attr0(R) \R)∩V0, let n = min{n ∈
N | v ∈ Attrn0 (R)}. Then, let σ(v) be the smallest v′ ∈ Attrn−1

0 (R) with (v, v′) ∈ E.
For every other position v ∈ V0 \ (Attr0(R) \R), let σ(v) be the smallest v′ ∈ V with
(v, v′) ∈ E. We show, by induction on n ∈ N, that any play that starts in v ∈ Attrn0 (R)
and is consistent with σ reaches R within at most n steps.

• if v ∈ V \Attr0(R), then v ∈W1(G) with the following uniform memoryless strategy τ :
We again fix an arbitrary total ordering on V . For v ∈ V1 \ Attr0(R) let τ(v) be the
smallest v′ ∈ V \ Attr0(R) such that (v, v′) ∈ E. Such a successor v′ always exists,
because otherwise v ∈ Attr0(R). For every other position v ∈ V1∩Attr0(R), let τ(v) be
the smallest v′ ∈ V with (v, v′) ∈ E. Now let ρ be an arbitrary play that is consistent
with τ . We show, by induction on n, that ρ(n) 6∈ Attr0(R) and, hence, ρ(n) 6∈ R, for
all n ∈ N.

52

9.3 Büchi Games
In a Büchi game, the goal of Player 0 is to visit some accepting position infinitely often. The
attractor construction allows us to check whether there is a strategy which enforces at least
one visit to an accepting position. Winning a Büchi game is more difficult. Reaching an
accepting state at least once is indeed a necessary precondition, but we also have to ensure
that from this position we can enforce a second visit to some accepting state, then a third,
and so forth. The recurrence construction computes the largest subset of the accepting
states from which Player 0 can enforce infinitely many subsequent visits to the subset.

Construction 9.2. Let an arena A = (V0, V1, E) with V = V0 ∪ V1 be given. The
recurrence construction on A is defined for all n ∈ N and F ⊆ V as:

Recur0(F) = F

Wn
1 (F) = V \Attr0(Recurn(F))

Recurn+1(F) = Recurn(F) \ CPre1(Wn
1 (F))

Recur (F) =
⋂
n∈N

Recurn(F)

The set Recurn(F) contains the subset of F from which Player 0 can enforce at least n
further (i.e., a total of at least n+1) visits to F . The set Wn

1 (F) contains those positions in
V from which Player 1 can enforce that there are at most n visits to F . The set Recur (F)
contains the subset of F from which Player 0 can enforce infinitely many visits to F . The
recurrence construction solves a game with winning condition büchi(F) as follows:

W0(G) = Attr0(Recur (F)), W1(G) = V rW0(G)

Example 9.3. We solve the game G = (A,büchi(v4, v6)) with arena A from Example 9.1:

v4

v1

v3 v5

v7

v0 v2

v6 v8

Recur0({v4, v6}) =
{v4, v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0({v4, v6}) =
{v3, v4, v6, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W 0
1 ({v4, v6}) =

{v0, v1, v2, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

CPre1({v0, v1, v2, v5, v8}) =
{v0, v1, v2, v4, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Recur1({v4, v6}) = {v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0({v6}) = {v3, v6, v7}

53

v4

v1

v3 v5

v7

v0 v2

v6 v8

W 1
1 ({v4, v6}) =

{v0, v1, v2, v4, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W0(G) = {v3, v6, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W1(G) = {v0, v1, v2, v4, v5, v8}

Theorem 9.2. Büchi games are memoryless determined. It holds that W0(G) =
Attr0(Recur (F)), W1(G) = V rW0(G). Both players have a uniform winning strategy.

Proof. We show for all positions v ∈ V that

• if v ∈ Attr0(Recur (F)), then v ∈ W0(G), with the following uniform memoryless
strategy σ:
We fix some arbitrary total ordering on V . For v ∈ (Attr0(Recur (F))\Recur (F))∩V0,
we follow the attractor strategy from the proof of Theorem 9.1. For v ∈ Recur (F)∩V0,
we choose the smallest v′ ∈ V with (v, v′) ∈ E and v′ ∈ Attr0(Recur (F)). Such
a successor must exist, because otherwise v ∈ CPre1(Wn

1 (F)) for some n ∈ N, and
hence v 6∈ Recur (F). Every play that is consistent with σ visits Recur (F) ⊆ F
infinitely often. Hence, σ is winning for Player 0.

• if v ∈ V \ Attr0(Recur (F)), then v ∈ W1(G) with the following uniform memoryless
strategy τ :
We again fix an arbitrary total ordering on V . We define the memoryless strategies τ
such that, for each n ∈ N, if a play starts in v ∈ Wn

1 = V r Attr0(Recurn(F)) and is
consistent with τ , there are at most n visits to F .

– For n = 0 let τ(v) be the smallest v′ ∈ V such that (v, v′) ∈ E and v′ ∈
V r Attr0(F).

– For n > 0 let τ(v) be the smallest v′ ∈ Wn−1
1 (F) with (v, v′) ∈ E if v ∈

CPre1(Wn−1
1 (F)) and as the smallest v′ in Wn

1 (F) with (v, v′) ∈ E otherwise.
Such a v′ always exists as otherwise v ∈ Attr0(Recurn(F)).

54

9.4 Parity Games
Perhaps the most intriguing type of infinite games are parity games. Parity games play a key
role in verification (in particular for µ-calculus model checking) and synthesis, and finding
fast algorithms for parity games is an active research topic. Part of the allure may be that
the complexity status of parity games is still open. Solving parity games is in NP, but it is
unknown if it can be done in polynomial time. The known algorithms take exponential time.

Definition 9.12. The parity condition parity(c) for a coloring function c : Q→ N is
the set

parity(c) = {α ∈ V ω | max{c(q) | q ∈ Inf(α)} is even}.

We first prove that parity games are memoryless determined, and then derive an algorithm
for solving parity games. In the following theorem, we emphasize that determinacy holds
also for (countably) infinite game arenas. This will be helpful when we use the determinacy
to complement tree automata, because the acceptance game of a tree automaton refers to
the infinite input tree and is therefore infinite.

Theorem 9.3. Parity games are memoryless determined with uniform winning strateges
for game arenas with a countable set of positions and a finite number of colors.

Proof. Let k = max{c(v) | v ∈ V } be the highest color in the given parity game. We prove
that parity games are memoryless determined by induction on k.

Case k = 0: If the highest color is 0, then all plays are winning. W0(G) = V,W1(G) = ∅.
For the memoryless winning strategy σ, we fix an arbitrary total order on V and choose
σ(v) = min{v′ ∈ V | (v, v′) ∈ E}.

Case k > 0: If k is even, consider Player i, otherwise Player (1− i). Let W1−i be the set of
positions where Player (1−i) has a memoryless winning strategy. We show that Player
i has a memoryless winning strategy σ from V \W1−σ. Consider the subgame G′:

• V ′0 = V0 \W1−i, V ′1 = V1 \W1−i, V ′ = V ′0 ∪ V ′1
• E′ = E ∩ (V ′ × V ′)
• c′(v) = c(v) for all v ∈ V ′

Note that G′ is still a game:

• for v ∈ V ′i , there is a v′ ∈ V \W1−i with (v, v′) ∈ E′, otherwise v would be in
W1−i

• for v ∈ V ′1−i, we have that for all v′ ∈ V with (v, v′) ∈ E, v′ ∈ V \W1−i, hence
there is a v′ ∈ V ′ with (v, v′) ∈ E

Let c′−1(k) = {v ∈ V ′ | c′(v) = k} and let Y = Attr ′i(c′−1(k)). (We denote with Attr ′
the attractor on the subgame G′.) Let σA be the corresponding attractor strategy on
G′ into c′−1(k), as defined in the proof of Theorem 9.1.
Now consider the subgame G′′:

• V ′′0 = V ′0 \ Y , V ′′1 = V ′1 \ Y , V ′′ = V ′′0 ∪ V ′′1
• E′′ = E′ ∩ (V ′′ × V ′′)
• c′′ : V ′′ → {0, . . . , k − 1}; c′′(v) = c′(v) for all v ∈ V ′′

55

Note that G′′ is still a game, and that the maximal color in G′′ is at most k − 1. We
therefore know, by induction hypothesis, that G′′ is memoryless determined. It is also
clear that W ′′1−i, the set of positions in game G′′ where Player (1− i) has a memoryless
winning strategy, is empty, because W ′′1−i is a subset of W1−i: assume Player (1 − i)
had a memoryless winning strategy from some position in V ′′. Then this strategy
would win in G, too, since Player i has no opportunity to leave G′′ other than to W1−i.
Hence, there is a uniform winning memoryless winning strategy σIH for player i from
all positions in V ′′. We define the following uniform strategy σ for Player i in game G:

σ(v) =


σIH (v) if v ∈ V ′′

σA(v) if v ∈ Y \ c′−1(k)
min. successor in V \W1−i if v ∈ Y ∩ c′−1(k)
min. successor in V otherwise.

The strategy σ is winning for Player 0 on V \W1−σ. Consider a play that is consistent
with σ:

Case 1: Y is visited infinitely often. Thus, Player i wins, because the color k, which
is the highest color, is visited.

Case 2: Eventually only positions in V ′′ are visited. Hence, since Player i follows
σIH , Player i wins.

The proof is non-constructive in the sense that we begin the argument by considering (rather
than computing) the set W1−i of positions where the opponent, Player (1− i), has a mem-
oryless winning strategy. McNaughton’s algorithm, one of the classic algorithms for parity
games over finite arenas, computes this set iteratively, with repeated recursive calls:

Construction 9.3. Let a finite parity game G = (A,parity(c)) be given. We compute
the winning regions W0(G) and W1(G) as follows:

Function McNaughton(G) =

1. k := highest color in G

2. if k = 0 or V = ∅
then return (V,∅)

3. i := k mod 2

4. W1−i := ∅

5. repeat

(a) G′ := G \Attr i(c−1(k))
(b) (W ′0,W ′1) := McNaughton(G′)
(c) if (W ′1−i = ∅) then

i. Wi := V \W1−i

ii. return (W0,W1)
(d) W1−i := W1−i ∪Attr1−i(W ′1−i)
(e) G := G \Attr1−i(W ′1−i)

56

10 Rabin’s Theorem
Infinite games allow us to reason very elegantly about infinite trees. A famous example of
an argument that became significantly simpler with the introduction of game-theoretic ideas
is the proof of Rabin’s theorem. Rabin’s theorem states that the satisfiability of monadic
second-order logic with two successors (S2S) is decidable. Like in Section 7, where we showed
that S1S formulas can be translated to automata, we will show that S2S formulas can be
translated to automata, this time, in order to accommodate more than one successor func-
tion, to automata over infinite trees. The most difficult part of the proof of Rabin’s theorem
is to show that tree automata are closed under complement. While Rabin’s original proof
was purely combinatorial (and very difficult to understand), the game-theoretic argument
is simply based on the determinacy of the acceptance game of the tree automaton: the
acceptance of a tree by a tree automaton can be characterized by the existence of a winning
strategy for Player 0, the non-acceptance, by the absence of such a strategy, or, by deter-
minacy, by the existence of a winning strategy for Player 1. We can therefore complement
the language of a given tree automaton by constructing a new automaton that verifies the
existence of a winning strategy for Player 1.

We begin this section with a discussion of tree automata. The logic S2S and the trans-
lation to tree automata will be introduced later in the section.

10.1 Tree Automata
We consider tree automata over infinite binary trees. We use the notation for trees intro-
duced in Section 8.1. The (full) binary tree is the language T = {0, 1}∗. For an alphabet Σ,
TΣ = {(T , t) | t : T → Σ} is the set of all binary Σ-labeled trees.

Definition 10.1. An automaton over infinite binary trees A is a tuple (Σ, Q, q0, T,Acc),
where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• T ⊆ Q× Σ×Q×Q,

• Acc ⊆ Qω is the acceptance condition.

In the following, we will refer to automata over infinite binary trees simply as tree automata.
Note that a transition of a tree automaton has two successor states, rather than a successor
state as for word automata. The two states correspond to the two directions 0 and 1 of the
input tree, the automaton may transition into different states for the different directions.

Definition 10.2. A run of a tree automaton A on an infinite Σ-labeled binary tree
(T , t) is a Q-labeled binary tree (T , r) such that the following hold:

• r(ε) = q0 • (r(n), t(n), r(n0), r(n1)) ∈ T for all n ∈ {0, 1}∗

Note that n0 and n1 are the children of node n in direction 0 and 1, respectively. The ac-
cepting runs are defined as for alternating automata in Section 8.1: we apply the acceptance
condition to the branches of the run tree. (Note that a run of an alternating automaton
may have finite and infinite branches. The acceptance condition is only checked on infinite
branches. Here, all branches are infinite.)

57

Definition 10.3. A run (T , r) is accepting iff, for every infinite branch n0n1n2 . . .,

r(n0)r(n1)r(n2) . . . ∈ Acc.

The language of the tree automaton A consists of the set of accepted Σ-labeled trees.

Example 10.1. The following Büchi tree automaton A = (Σ, Q, q0, T,büchi(F)) accepts
all {a, b}-labeled trees with infinitely many b’s on each branch.

• Σ = {a, b}

• Q = {qa, qb}; q0 = qa

• T = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb), (qb, b, qb, qb)}

• F = {qb}

Consider the input tree (T , t):

a

a

a b

b

a b...

The following tree is a run of A on (T , t):

qa

qa

qa

qa qa

qa

qb qb

qa

qb

qa qa

qb

qb qb...

The acceptance mechanism of a tree automaton is also characterized via its acceptance game.

Definition 10.4. Let A = (Σ, Q, q0, T,Acc) be a tree automaton and let (T , t) be a
Σ-labeled binary tree. Then the acceptance game of A on (T , t) is the game GA,t =
(A′,Win′) with the infinite game arena A′ = (V ′, V ′0 , V ′1 , E′) and the winning condition
Win′ defined as follows:

• V ′0 = {(w, q) | w ∈ {0, 1}∗, q ∈ Q}

• V ′1 = {(w, τ) | w ∈ {0, 1}∗, τ ∈ T}

• E′ = {((w, q), (w, τ)) | τ = (q, t(w), q0, q1), τ ∈ T} ∪
{((w, τ), (w′, q′)) | τ = (q, σ, q0, q1) and

w′ = w0 and q′ = q0 or w′ = w1 and q′ = q1}

• Win′ = {(w[0, 0], q(0))(w[0, 0], τ(0))(w[0, 1], q(1))(w[0, 1], τ(1)) . . . |
q(0)q(1) . . . ∈ Acc, w(0)w(1) . . . ∈ {0, 1}ω, τ(0)τ(1) . . . ∈ Tω}

58

Example 10.2. The following is a part of the acceptance game of automaton A from
Example 10.1.

ε, qa ε, (qa, a, qa, qa)

0, qa

1, qa

· · ·

· · ·

Theorem 10.1. A tree automaton A = (Σ, Q, q0, T,Acc) accepts an input tree (T , t) if
and only if Player 0 wins the acceptance game GA,t = (A′,Win′) from position (ε, q0).

Proof. Given an accepting run (T , r) of A, we construct a memoryless winning strategy
σ : V ′0 → V ′ for Player 0:

σ(w, q) = (w, (r(w), t(w), r(w0), r(w1)).

Conversely, given a winning strategy σ : V ′∗V ′0 → V ′, we construct an accepting run (T , r)
where r(ε) = q0 and for all w ∈ {0, 1}∗

r(w0) = q for σ(∆(w)) = (w, (, , q,)) and r(w1) = q for σ(∆(w)) = (w, (, , , q)),

where ∆(ε) = (ε, q0) and ∆(wd) = ∆(w) · σ(∆(w)) · (wd, r(wd)) for d ∈ {0, 1}.

The acceptance game can also be used to test if the language of a given tree automaton
is non-empty. For this purpose, we first translate the given automaton into an automaton
with singleton alphabet.

Construction 10.1. For a given tree automatonA over Σ-labeled trees we consider the
following tree automaton A′ over {1}-labeled trees, such that L(A) = ∅ iff L(A′) = ∅:

• Q′ = Q

• q′0 = q0

• T ′ = {(q, 1, q′, q′′) | (q, σ, q′, q′′) ∈ T, σ ∈ Σ}

• Acc′ = Acc

Because the subtrees of a {1}-labeled binary tree are the same from all nodes, we can simplify
its acceptance game such that only finitely many positions are needed. We call this game
the emptiness game.

Definition 10.5. Let A = (Σ, Q, q0, T,Acc) be a tree automaton. The emptiness game
of A is the game GA = (A′,Win′) with the finite arena A′ = (Q ∪ T,Q, T,E), where

E = {(q, τ) | τ = (q, σ, q0, q1), τ ∈ T}∪{(τ, q′) | τ = (, σ, q0, q1) and (q′ = q0 or q′ = q1)}

and Win′ = {q(0)τ(0)q(1)τ(1) . . . | q(0)q(1) . . . ∈ Acc, τ(0)τ(1) . . . ∈ Tω}.

59

Theorem 10.2. The language of a tree automaton A is non-empty iff Player 0 wins
the emptiness game GA from position q0.

Proof. The emptiness game corresponds to the acceptance game of the automaton from
Construction 10.1 on the {1}-labeled binary tree.

10.2 Complementation of Parity Tree Automata
We now prove that parity tree automata are closed under complementation. As discussed at
the beginning of the section, our proof makes heavy use of the determinacy of parity games
(with infinite game arenas) established in Theorem 9.3.

Theorem 10.3. For every parity tree automaton A over Σ there is a parity tree au-
tomaton A′ with L(A′) = TΣ r L(A′).

Proof. Let A = (Σ, Q, q0, T,parity(c)). By Theorem 10.1, a tree (T , t) is accepted by A iff
Player 0 has a winning strategy from position (ε, q0) of the acceptance game GA,t. Since A
is a parity tree automaton, GA,t is a parity game and therefore, by Theorem 9.3, memoryless
determined. Hence, A does not accept some tree t iff Player 1 has a winning memoryless
strategy σ in GA,t from (ε, q0). The strategy

σ : {0, 1}∗ × T → {0, 1}∗ ×Q

can be represented as a function

σ′ : {0, 1}∗ × T → {0, 1}

where σ(w, (q, σ, q0, q1)) = (wi, qi) iff σ′(w, (q, σ, q0, q1)) = i. Yet another representation of
the same strategy is

σ′′ : {0, 1}∗ → (T → {0, 1}),

which can be understood as a labeling of T with finite “local strategies”. Hence, A does not
accept (T , t) iff

(1) there is a (T → {0, 1})-labeled tree (T , v) such that
(2) for all i0i1i2 . . . ∈ {0, 1}ω

(3) for all τ0τ1 . . . ∈ Tω

(4) if
• for all j: τj = (q, a, q0, q1) implies a = t(i0i1 . . . ij) and
• i0i1 . . . = v(ε)(τ0)v(i0)(τ1) . . .

then
the generated state sequence q(0)q(1) . . . with q(0) = q0,
(q(j), a, q0, q1) = τj , and q(j + 1) = qv(i0,...,ij−1)(τj) for all j
violates parity(c).

We now encode this condition as a tree automaton. Condition (4) is a property of words
over alphabet

Σ4 = (M → {0, 1})︸ ︷︷ ︸
v

× Σ︸︷︷︸
t

× T︸︷︷︸
τ

×{0, 1}︸ ︷︷ ︸
i

and can be checked by a parity word automaton A4 = (Σ′, Q4, {q4}, T4,parity(c4)):

60

• Q4 = Q ∪ {⊥}

• q4 = q0

• T4 = {(q, (f, a, (q, a, q0, q1), i), qi) |
q ∈ Q, f : T → {0, 1}, (q, a, q0, q1) ∈ T, i = f(q, a, q0, q1)} ∪

{(q, (f, a, (q, a′, q0, q1), i),⊥) | a 6= a′ or i 6= f(q, a′, q0, q1)} ∪ {(⊥, a,⊥) | a ∈ Σ′}

• c4(q) = c(q) + 1 for q ∈ Q and c4(⊥) = 0

Condition (3) is a property of words over Σ3 = (T → {0, 1})×Σ×{0, 1} which results from
(4) by universal quantification (= complement → projection → complement). Hence, there
is a deterministic parity word automaton A3 that checks (3).
Condition (2) defines a property of Σ2-labeled trees where Σ2 = (T → {0, 1}) × Σ. It can
be checked by a tree automaton A2 = (Q2, q2, T2,parity(c2)), that simulates A3 along each
path:

• Q2 = Q3

• q2 = q3

• T2 = {(q, (f, a), q0, q1) | (q, (f, a, 0), q0) ∈ T3, (q, (f, a, 1), q1) ∈ T3}

• c2 = c3

Condition (1) is a property on Σ-labeled trees: We use nondeterminism to guess the
T → {0, 1} label: A1 = (Q1, q1, T1,parity(c1)), where

• Q1 = Q2

• q1 = q2

• T1 = {(q, a, q0, q1) | ∃f : T → {0, 1}. (q, (f, a), q0, q1) ∈ T2}

• c1 = c2

10.3 Monadic Second-Order Logic of Two Successors (S2S)
In Section 7.3 we introduced the monadic second-order logic of one successor to describe
sets of infinite words through quantification over positions and sets of positions. In this
section, we extend this concept to infinite trees, where we now quantify over nodes (and sets
of nodes) in the tree instead of positions in the word. We begin with binary trees, leading
to the Monadic Second-Order Logic of Two Successors. In contrast to S1S, we now have
two successor operations, one to address the left child in of a node in the tree and one to
address the right child.
The terms of S2S are defined by the following grammar:

t ::= ε | x | t0 | t1

The formulas of S2S are defined by the following grammar:

ϕ ::= t ∈ X | t1 = t2 | ¬ϕ | ϕ0 ∨ ϕ1 | ∃x. ϕ | ∃X.ϕ

where x ∈ V1 and X ∈ V2 are first-order and second-order variables, respectively.

The semantics of S2S is again defined relative to a valuation of the variables. The first-order
valuation σ1 : V1 → {0, 1}∗ now assigns to each first-order variable a node in the tree. The
second-order valuation σ2 : V2 → 2{0,1}∗ assigns to each second-order variable a set of nodes.
The value of a term is then defined as follows:

61

• [ε]σ1 = ε

• [x]σ1
= σ1(x)

• [t0]σ1
= [t]σ1

0

• [t1]σ1
= [t]σ1

1

We again distinguish free and bound occurrences of a variable, and identify the subsets
V ′1 ⊆ V1 and V ′2 ⊆ V2 of free first-order and free second-order variables, respectively. An
S2S formula ϕ defines the following language of infinite 2V ′1∪V ′2 -labeled binary trees:

L(ϕ) = {(T , tσ1,σ2) | σ1, σ2 |= ϕ},

where, for all n ∈ {0, 1}∗, x ∈ tσ1,σ2(n) iff n = σ1(x), and X ∈ tσ1,σ2(n) iff n ∈ σ2(X), and
|= is the smallest relation that satisfies the following:

• σ1, σ2 |= t ∈ X iff [t]σ1
∈ σ2(X)

• σ1, σ2 |= t1 = t2 iff [t1]σ1
= [t2]σ1

• σ1, σ2 |= ¬ϕ iff σ1, σ2 6|6= ϕ

• σ1, σ2 |= ϕ0 ∨ ϕ1 iff σ1, σ2 |= ϕ0 or σ1, σ2 |= ϕ1

• σ1, σ2 |= ∃x. ϕ iff there is an n ∈ {0, 1}∗ s.t.

σ′1(y) =
{
σ1(y) if x 6= y

n otherwise

and σ′1, σ2 |= ϕ

• σ1, σ2 |= ∃X.ϕ iff there is an S ⊆ {0, 1}∗ s.t.

σ′2(Y) =
{
σ2(Y) if X 6= Y

S otherwise

and σ1, σ
′
2 |= ϕ

Example 10.3. Some examples for S2S formulas:

a) Node x is a prefix of node y:

x ≤ y :≡ ∀X. y ∈ X ∧ ∀z. (z0 ∈ X → z ∈ X) ∧ (z1 ∈ X → z ∈ X)→ x ∈ X

b) X is linearly ordered by ≤:

Chain(X) :≡ ∀x.∀y. x ∈ X ∧ y ∈ X → (x ≤ y ∨ y ≤ x)

c) X is a path:

Path(X) :≡ Chain(X) ∧ ¬∃Y.X ⊆ Y ∧X 6= Y ∧ Chain(Y)

d) X is infinite:

Inf (X) :≡ ∃Y. Y 6= ∅ ∧ ∀y ∈ Y.∃y′ ∈ Y.∃x′ ∈ X. y < y′ ∧ y < x′

62

Next, we analyze the connection of S2S definable languages and languages recognizable via
tree automata over binary trees. We show that every S2S-definable language is recognizable
by a parity tree automaton and vice versa.

Theorem 10.4. For each parity tree automaton A over infinite 2V2 -labeled binary trees,
there is an S2S formula ϕA over V2 such that L(ϕA) = L(A).

Proof. For a parity tree automaton A = (Σ, Q, q0, T,parity(c)) we define an S2S formula
ϕA such that L(ϕA) = L(A). Let Q = {q0, q1, . . . qm} and let c : Q → {0, . . . , k} for some
k ∈ N. For an input tree t, we “guess” an accepting run tree of A:

ϕA :≡ ∃Rq0 , Rq1 , . . . Rqm . ϕpart ∧ ϕinit ∧ ϕtrans ∧ ϕaccept

where
ϕpart :≡ ∀x.

∨
q∈Q

Stateq(x)

ϕinit :≡ Stateq0(ε)

ϕtrans :≡ ∀x.
∨

(q,A,q′0,q′1)∈T

Stateq(x) ∧
∧
V ∈A

x ∈ V ∧
∧
V 6∈A

x /∈ V ∧

Stateq′0(x0) ∧ Stateq′1(x1)
ϕaccept :≡ ∀X.Path(X)→ Parity(X)

Stateq(x) :≡ x ∈ Rq ∧
∧

q′∈Qr{q}

x /∈ Rq′

InfOccq(Y) :≡ ∃X.X ⊆ Y ∧X ⊆ Rq ∧ Inf (X)

Parity(X) :≡
∨

i∈{0,2,4,...,k}

∨
c(q)=i

InfOccq(X) ∧
∧

c(q)>i

¬InfOccq(X)

Theorem 10.5. Every S2S-definable language is recognizable by a parity tree automa-
ton.

Proof. Analogously to Lemma 7.1, we focus on a restricted sublogic (S2S0), where the
equalities are restricted to the following types:

x = ε x = y0 x = y1 x ∈ Y x = y

We inductively translate S2S0 formulas to tree automata, as in the corresponding proof
for S1S in Theorem 7.4. We only give an example here. We translate x ∈ Y to A =
(Σ, Q, q0, T,parity(c)), where

• Q = {q0, q1}

• T = {(q0, A, q0, q1) | x /∈ A} ∪
{(q0, A, q1, q0) | x /∈ A} ∪
{(q0, A, q1, q1) | x ∈ A, Y ∈ A} ∪
{(q1, A, q1, q1) | x /∈ A}

• c(q0) = 1, c(q1) = 0.

Since language-emptiness of parity tree automata is decidable (we can, for example, solve
the emptiness game with McNaughton’s algorithm), we obtain Michael Rabin’s result that
S2S is decidable.

63

Theorem 10.6 (Rabin’s theorem). S2S is decidable.

Generalizing from binary trees to n-ary trees, we obtain the Monadic Second-Order Logic
of n Successors (SnS).

Theorem 10.7. SnS is decidable.

Proof. Repeat the proofs of Theorem 10.4 and Theorem 10.5 for automata on infinite n-ary
trees (which are defined analogously to automata on infinite binary trees).

Finally, we can even allow for trees where each node has countably infinitely many children.
We obtain the Monadic Second-Order Logic of ω Successors (SωS).

Theorem 10.8. SωS is decidable.

Proof. We give an effective translation from SωS to S2S. First, let β be the bijection from
N∗ to 0 · {0, 1}∗, defined via

β(w) =
{
ε if w = ε

β(w′)01n if w = w′n

This allows us to define a one-to-many relation R between SωS and S2S structures. We
label a position β(x) in the binary tree with σ if and only if x is labeld with σ in the ω-ary
tree. We then can translate the SωS formula to S2S by transforming it to normal form first,
and then using the following rules:

• x = yn 7→ x = y01n for n ∈ N

• ∃X.ϕ 7→ ∃X. (∀y ∈ X. 0 ≤ y) ∧ ϕ

64

11 Computation Tree Logic
Temporal logics over trees are called branching-time logics, because the tree structure reflects
the branching into the possible future behaviors of a system. In this section, we study
Computation Tree Logic (CTL) as an example of a branching-time logic. We translate CTL
formulas into tree automata, which will allow us to subsequently check emptiness, solve the
model checking problem etc. with standard constructions. Analogously to our translation of
LTL formulas into word automata in Section 8, we simplify the translation by going through
alternating automata.

11.1 CTL
Computation Tree Logic (CTL) is a modal logic over infinite trees due to Clarke and Emerson
(1981). The syntax of CTL is defined as follows:

• CTL state formulas:

– p ∈ AP atomic proposition
– ¬Ψ and Ψ1 ∧ Ψ2 negation and conjunction
– Eϕ there exists a path fulfilling ϕ
– Aϕ all paths fulfill ϕ

• CTL path formulas:

– Ψ the next state fulfills Ψ
– Ψ1 U Ψ2 Φ holds until a Ψ-state is reached

where Ψ, Ψ1 and Ψ2 are state formulas, and ϕ is a path formula. Note that and U
alternate with A and E . A CTL formula Φ over a set AP of atomic propositions defines the
following language of infinite 2AP-labeled binary trees: L(Φ) = {(T , t) | t, ε |= Φ}, where |=
is the smallest relation that satisfies the following:

• CTL state formulas:

t, n |= p iff p ∈ t(n)
t, n |= ¬Ψ iff ¬(t, n |= Ψ)
t, n |= Ψ1 ∧Ψ2 iff (t, n |= Ψ1) ∧ (t, n |= Ψ2)
t, n |= Eϕ iff t, π |= ϕ for some path π that starts in n

t, n |= Aϕ iff t, π |= ϕ for all paths π that start in n

• CTL path formulas:

t, π |= Ψ iff t, π[1] |= Ψ
t, π |= Ψ1 U Ψ2 iff (∃j ≥ 0. t, π[j] |= Ψ2 ∧ (∀0 ≤ k < j. t, π[k] |= Ψ1))

11.2 Alternating Tree Automata
Analogously to the definition of alternating word automata in Section 8, we generalize
nondeterministic tree automata to alternating tree automata by introducing a transition
function that maps states and input letters to positive boolean formulas. For word automata,
the boolean formulas refer to states, for tree automata to pairs of directions and states.

65

Definition 11.1. An alternating tree automaton over binary Σ-labeled trees is a tuple
A = (Σ, Q, q0, δ,Acc), where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• δ : Q× Σ→ B+({0, 1} ×Q) is the transition function, and

• Acc ⊆ Qω is the acceptance condition.

For nondeterministic tree automata, run trees of automata over binary trees are again binary
trees. This is no longer the case for alternating automata, because the automaton may
branch to multiple states along the same direction of the input tree. This then results in
multiple directions in the run tree that correspond to the same direction of the input tree.
In the following, let D be some arbitrary finite set of directions, and let a tree T be some
prefix-closed subset of D∗.

Definition 11.2. A run of an alternating automaton on a Σ-labeled binary tree (T , v)
is a {0, 1}∗ ×Q-labeled tree (T , r) with the following properties:

• r(ε) = (ε, q0) and

• for all n ∈ T , if r(n) = (m, q), then {(d, q′) | (m · d, q′) = r(n′) for some n′ ∈
children(n)} satisfies δ(q, v(m)).

Definition 11.3. A run (T, r) is accepting iff, for every infinite branch n0n1n2 . . .,

r(n0)r(n1)r(n2) . . . ∈ Acc.

As for nondeterministic automata, the acceptance mechanism of an alternating tree automa-
ton can also be characterized via its acceptance game.

Definition 11.4. Let A = (Σ, Q, q0, δ,Acc) be an alternating tree automaton and let
(T , t) be a Σ-labeled binary tree. Then the acceptance game of A on (T , t) is the game
GA,t = (A′,Win′) with the infinite game arena A′ = (V ′, V ′0 , V ′1 , E′) and the winning
condition Win′ defined as follows:

• V ′0 = {(w, q) | w ∈ {0, 1}∗, q ∈ Q}

• V ′1 = {(w,X) | w ∈ {0, 1}∗, X ⊆ {0, 1} ×Q}

• E′ = {((w, q), (w,X)) | X |= δ(q, t(w))} ∪
{((w,X), (w′, q′)) | (d, q′) ∈ X and w′ = w · d}

• Win′ = {(α[0, 0], q0)(α[0, 0], X0)(w[α, 1], q1)(α[0, 1], X1) . . . |
α ∈ {0, 1}ω, q0q1 . . . ∈ Acc}

In model checking, the tree is often given as the unfolding of a finite graph. In this case, the
acceptance game can be simplified to a finite game, where the positions refer to the nodes

66

of the graph instead of to the nodes of the tree.

Theorem 11.1. An alternating tree automaton A = (Σ, Q, q0, T,Acc) accepts an input
tree (T , t) if and only if Player 0 wins the acceptance game GA,t = (A′,Win′) from
position (ε, q0).

As for word automata, alternation does not make the automata more expressive. Alternating
Büchi tree automata can be translated into equivalent nondeterministic Büchi tree automata.

Theorem 11.2. For every alternating Büchi tree automaton A, there exists a nonde-
terministic Büchi tree automaton A′ with L(A) = L(A′).

11.3 From CTL to Alternating Tree Automata
Similar to the construction of alternating word automata from LTL formulas in Section 8.2,
we now translate CTL formulas to alternating tree automata.

Construction 11.1. Let Φ be an CTL formula. We construct the alternating Büchi
tree automaton AΦ = (Σ, Q,Φ, δ,büchi(F)) as follows:

• Q = closure(Φ) := {Ψ,¬Ψ | Ψ is subformula of Φ}

• for p ∈ AP:

δ(p, σ) =
{

true if p ∈ σ
false if p /∈ σ

• δ(Ψ1 ∧Ψ2, σ) = δ(Ψ1, σ) ∧ δ(Ψ2, σ)

• δ(A Ψ, σ) = (0,Ψ) ∧ (1,Ψ)

• δ(E Ψ, σ) = (0,Ψ) ∨ (1,Ψ)

• δ(A(Ψ1 U Ψ2), σ) = δ(Ψ2, σ) ∨ (δ(Ψ1, σ) ∧ (0,A(Ψ1 U Ψ2)) ∧ (1,A(Ψ1 U Ψ2))

• δ(E(Ψ1 U Ψ2, σ) = δ(Ψ2, σ) ∨ (δ(Ψ1, σ) ∧ (0,E(Ψ1 U Ψ2)) ∨ (1,E(Ψ1 U Ψ2))

• δ(¬Ψ, σ) = δ(Ψ, σ)

• F = {¬A(Ψ1 U Ψ2),¬E(Ψ1 U Ψ2) ∈ closure(Φ)}.

67

68

12 Summary
We conclude with a summary of the course’s main results.

12.1 Automata
The various types of automata studied in this course can be classified according to their input
(words vs. trees), their branching mode (deterministic vs. nondeterministic vs. universal
vs. alternating) and their acceptance condition (Büchi vs. co-Büchi vs. parity vs. Streett
vs. Rabin vs. Muller).

Word automata. For automata on infinite words, we know from Büchi’s Characterization
Theorem (Theorem 3.6) that the languages that are recognizable by nondeterministic Büchi
automata are exactly the ω-regular languages. We showed in Theorem 4.1 that deterministic
Büchi automata are strictly less expressive: the language (a + b)∗bω is not recognizable by
a deterministic Büchi automaton. In Problem 4.5 of the tutorial we showed that nonde-
terministic co-Büchi automata are also strictly less expressive: the language (a∗b)ω cannot
be recognized by a nondeterministic co-Büchi automaton. Universal co-Büchi automata are
the dual of nondeterministic Büchi automata. Since nondeterministic Büchi automata are
closed under complement (Theorem 5.1), universal co-Büchi automata therefore recognize
the ω-regular languages. Likewise, because universal Büchi automata are the dual of non-
deterministic co-Büchi automata, they are also strictly less expressive. Alternating Büchi
automata and alternating co-Büchi automata recognize the ω-regular languages because the
include nondeterministic Büchi automata and universal co-Büchi automata, respectively.

By McNaughton’s theorem (Theorem 6.5), deterministic Muller automata (and, hence,
also nondeterministic, universal, and alternating Muller automata) are as expressive as non-
deterministic Büchi automata.

Büchi co-Büchi Muller
deterministic – – +
nondeterministic + – +
universal – + +
alternating + + +

Tree automata. For automata on infinite trees, we showed, in Problem 13.2 of the tuto-
rial, that deterministic parity tree automata are strictly less expressive than nondeterministic
parity tree automata: the tree language over {a, b}-labeled binary trees that consists of all
trees that have at least one a-labeled node cannot be recognized by a deterministic parity
tree automaton. In Problem 13.5 of the tutorial, we showed that nondeterministic Büchi
tree automata are strictly less expressive than nondeterministic parity tree automata: The
tree language over {a, b}-labeled binary trees that consists of all trees where every branch
has only finitely many a-labeled nodes cannot be recognized by a nondeterministic Büchi
automaton.

Alternating Büchi tree automata have the same expressiveness as nondeterministic Büchi
tree automata. By duality, alternating (and universal) co-Büchi tree automata are also less
expressive than parity tree automata.

Büchi co-Büchi parity
deterministic – – –
nondeterministic – – +
universal – – +
alternating – – +

69

12.2 Characterization Theorems
We proved several characterization theorems.

• An ω-language L is Büchi recognizable iff L is ω-regular (Büchi’s Characterization
Theorem, Theorem 3.6).

• An ω-language L is recognizable by a deterministic Büchi automaton iff there is a
regular language W ⊆ Σ∗ s.t. L = −→W (Theorem 4.2).

• An ω-language L is recognizable by a deterministic Muller automaton iff L is a boolean
combination of languages −→W where W ⊆ Σ∗ is regular (Theorem 6.4).

12.3 Translating Branching Modes
We translated automata with more complex branching modes to automata with simpler
branching modes.

• nondeterministic Büchi word automata → deterministic Muller word automata
(Safra’s construction, Construction 6.7).

• alternating Büchi word automata → nondeterministic Büchi word automata
(Miyano and Hayashi’s construction, Construction 8.2).

• alternating Büchi tree automata → nondeterministic Büchi tree automata
(Theorem 11.2).

12.4 Translating Acceptance Conditions
We translated automata with different acceptance conditions into each other.

• Büchi, co-Büchi, parity → parity, Rabin, Streett
Since the acceptance conditions on the left are special cases of the acceptance condi-
tions on the right, these translations are simple (cf. Problem 5.4 in the tutorial).

• Büchi, co-Büchi, Rabin, Streett, parity → Muller
Since the acceptance conditions on the left can be expressed as Muller conditions,
these translations are also conceptually simple; the Muller condition may, however, be
exponentially large (cf. Theorem 6.1 and Problem 5.4 in the tutorial).

• Muller → parity
This construction involves a modification of the state space of the automaton (latest
appearence record construction, Problem 6.4 in the tutorial).

12.5 Automata and Games
We studied the connection between automata and games with two useful games defined by
automata:

• In the acceptance game GA,t of a nondeterministic or alternating tree automaton A
(Definition 10.4), Player 0 wins iff A accepts t.

• In the emptiness game GA of a nondeterministic tree automaton A (Definition 10.5),
Player 0 wins iff the language of A is non-empty.

If the alphabet consists of a single letter, the two games are equivalent. Applications of the
game-based view are the complementation of tree automata (Theorem 10.3) and algorithms
for checking language emptiness of tree automata.

70

12.6 Determinacy

A game is memoryless determined if, from each position, one of the players has a memoryless
winning strategy.

• Reachability, Büchi, co-Büchi, parity games are memoryless determined (Theorems 9.1,
9.2, 9.3).

• Muller, Streett, Rabin games are determined, but not memoryless determined (Prob-
lem 11.3 in the tutorial).

An implication of these results is that memoryless runs suffice for alternating Büchi, co-
Büchi, and parity word automata. We proved this explicitly for alternating Büchi automata
in Theorem 8.2.

12.7 Logics

We studied logics over words and trees.

• Logics over words: QPTL, S1S, and WS1S have the same expressiveness as Büchi word
automata (Theorems 7.2, 7.3, 7.4, and 7.5), LTL is less expressive (Theorem 7.1).

• Logics over trees: S2S has the same expressiveness as parity tree automata over binary
trees (Theorems 10.4 and 10.5), CTL is less expressive.

An implication if these results is that the satisfiability problems for LTL, QPTL, S1S, WS1S,
CTL, S2S are all decidable. To check if a given formula is satisfiable, translate it to the
equivalent automaton and check if the language of the automaton is non-empty.

12.8 Model Checking and Synthesis

We can use the standard constructions to solve the model checking and synthesis problems
for various logics.

CTL model checking. Does a given transition system M satisfy an CTL formula Φ?

CTL formula Φ

alternating Büchi tree automaton AΦ

Acceptance game for M and AΦ

Player 0 wins: M |= Φ Player 1 wins: M 6|= Φ

71

LTL model checking. Does a given transition system M satisfy an LTL formula ϕ?

LTL formula ϕ

universal co-Büchi word automaton Aϕ constructed via
the nondeterministic Büchi automaton for ¬ϕ

Universal tree automaton A′ϕ

Acceptance game for M and A′ϕ

Player 0 wins: M |= ϕ Player 1 wins: M 6|= ϕ

An alternative view on LTL model checking, which avoids tree automata, is the following:

LTL formula ϕ

Negation ¬ϕ

Alternating Büchi automaton A¬ϕ

Nondeterministic Büchi automaton A′¬ϕ

Intersection: nondeterministic Büchi automaton AP,¬ϕ

Safety automaton AP

Program P

Empty?

Yes: P satisfies ϕ No: P violates ϕ

LTL synthesis. Does there exist a transition system M that satisfies an LTL formula ϕ
over inputs I and outputs O?

LTL formula ϕ

Deterministic parity word automaton Aϕ constructed via
the nondeterministic Büchi automaton for ϕ

Synthesis game: parity game Gϕ

Player 0 wins: ϕ is realizable Player 1 wins: ϕ is not realizable

72

	Introduction
	Model Checking
	Synthesis
	The Logic-Automata Connection

	Büchi Automata
	Preliminaries
	Automata over Infinite Words
	The Büchi Acceptance Condition

	Büchi's Characterization Theorem
	Kleene's Theorem
	Omega-Regular Languages
	Closure Properties of the Büchi-Recognizable Languages
	Büchi's Characterization Theorem

	Deterministic Büchi Automata
	Complementation of Büchi Automata
	McNaughton's Theorem
	The Muller Acceptance Condition
	From Nondeterministic to Semi-Deterministic Automata
	From Semi-Deterministic Büchi to Deterministic Muller
	Safra's Construction

	Logics over Infinite Sequences
	Linear-time Temporal Logic (LTL)
	Quantified Propositional Temporal Logic (QPTL)
	Monadic Second-Order Logic of One Successor (S1S)
	Weak Monadic Second-Order Logic of One Successor (WS1S)

	Alternating Büchi Automata
	Alternating Automata
	From LTL to Alternating Automata
	Translating Alternating to Nondeterministic Automata

	Infinite Games
	Basic Definitions
	Reachability Games
	Büchi Games
	Parity Games

	Rabin's Theorem
	Tree Automata
	Complementation of Parity Tree Automata
	Monadic Second-Order Logic of Two Successors (S2S)

	Computation Tree Logic
	CTL
	Alternating Tree Automata
	From CTL to Alternating Tree Automata

	Summary
	Automata
	Characterization Theorems
	Translating Branching Modes
	Translating Acceptance Conditions
	Automata and Games
	Determinacy
	Logics
	Model Checking and Synthesis

