Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. LTL to Alternating Büchi (presented by Group 10)

Construct an alternating Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}((\diamondsuit p)\mathcal{U}(\Box q))$. Use the construction from the lecture to obtain \mathcal{A} .

2. LTL to Alternating co-Büchi (presented by Group 14)

Give a construction to translate an LTL formula φ into an alternating co-Büchi automaton \mathcal{A}_{φ} and prove that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$. The number of states of \mathcal{A}_{φ} should not increase more than linear in the number of subformulas of φ .

3. Alternating Muller Automata (presented by Group 09)

Prove or give a counter example to the following statement: If an alternating Muller automaton \mathcal{A} accepts some word $\alpha \in \Sigma^{\omega}$, then there is an accepting *memoryless* run tree of \mathcal{A} on α .

4. Very Weak Alternating Büchi Automata (presented by Group 07)

A very weak alternating automaton \mathcal{A} is an alternating automaton whose transition relation describes a DAG equipped with possibly additional self loops, i.e., there is some total ordering \leq on the states of \mathcal{A} such that from every state q only states q' with $q \leq q'$ are reachable (including q itself).

Prove or give a counter example to the following statement: Each language recognizable by some very weak alternating Büchi automaton is non-counting.

5. Alternating Büchi vs. Alternating co-Büchi Automata (Challenge)

Prove or give a counter example to the following statement: An ω -language L is recognizable by some alternating Büchi automaton if and only if L is recognizable by some alternating co-Büchi automaton.