Automata, Games, and Verification

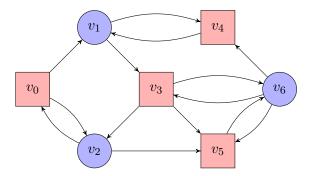
Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. **Games** (presented by Group 11)

Consider the game $\mathcal{G} = (\mathcal{A}, \operatorname{Win})$ with the arena $\mathcal{A} = (V, V_0, V_1, E)$ depicted below and the winning condition Win defined by

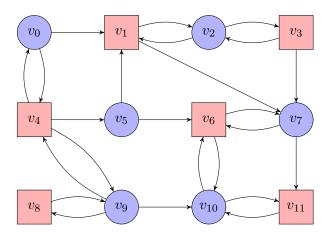
$$Win = \{ \rho \in V^{\omega} \mid V = Occ(\rho) \},\$$

i.e., a play is winning for Player 0 in this game iff all vertices of \mathcal{G} are visited at least once in the play.



- a) Give at least one winning strategy from some vertex for each player. Argue why they are winning.
- b) Determine the winning regions of the game. You do not have to give a justification.
- c) Is the game memoryless determined? Argue formally.

2. Reachability Games (presented by Group 04)



Consider the arena A depicted above.

- a) Determine the winning regions and the respective winning strategies of both players in the reachability game $\mathcal{G}_1 = (\mathcal{A}, \text{REACH}(\{v_7, v_{10}\}))$.
- b) Determine the winning regions and the respective winning strategies of both players in the reachability game $\mathcal{G}_1 = (\mathcal{A}, \text{REACH}(\{v_1\}))$.
- c) Give a minimal set R of vertices (minimal in the size) such that Player 0 wins the reachability game $\mathcal{G}_R = (\mathcal{A}, \mathtt{REACH}(R))$ from every position of \mathcal{A} .

3. **Memoryless Strategies** (presented by Group 13)

- a) Prove or disprove whether Muller games are memoryless determined.
- b) Given a library of procedures for automata, describe a simple algorithm that verifies whether a given memoryless strategy is winning for Player 0 in a Büchi game \mathcal{G} starting at some position p.

4. **Nondeterministic Strategies** (presented by Group 01)

A nondeterministic memoryless strategy for Player 0 is a relation $R \subseteq (V_0 \times V) \cap E$. We say that Player 0 follows R in a play ρ if for all $n \in \mathbb{N}$, $\rho(n) \in V_0$ implies $(\rho(n), \rho(n+1)) \in R$. The strategy R is winning for Player 0 if all plays played according to R are winning for Player 0.

Prove or give a counterexample to the following statement: If Player 0 has two winning nondeterministic memoryless strategies R_1 and R_2 for a reachability game \mathcal{G} from some position v, then $R_1 \cup R_2$ is a winning strategy for Player 0 in the game \mathcal{G} from p.

5. Generalized Reachability (Challenge)

Consider the generalized reachability winning condition given by:

GENREACH(
$$\mathcal{R}$$
) = { $\rho \in \text{Plays}(\mathcal{A}) \mid \forall R \in \mathcal{R}. \text{ Occ}(\rho) \cap R \neq \emptyset$ }

Prove that solving generalized reachability games is PSPACE-hard. The size of a generalized reachability game $\mathcal{G} = (\mathcal{A}, \text{GENREACH}(\mathcal{R}))$ is defined to be $|\mathcal{A}| + |\mathcal{R}|$.