Prof. Bernd Finkbeiner, Ph.D. Felix Klein, M.Sc.

Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

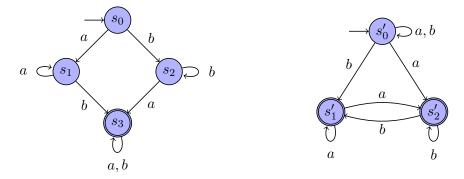
1. Language Emptiness (presented by Group 10)

For each of the following languages over $\Sigma = \{a, b\}$ determine whether it is empty. For each nonempty language, describe an ω -word in the language.

- a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \text{each occurrence of an } a \text{ in } \alpha \text{ is followed immediately by a } b \text{ and}$ there are infinitely many a's in $\alpha \}$
- b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \text{ each occurrence of a } b \text{ in } \alpha \text{ is followed immediately by two occurrences of an } a \}$
- c) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \in L_1 \text{ implies } \alpha \in L_2 \}$
- d) $L_4 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \in L_2 \text{ implies } \alpha \in L_3 \}$
- e) $L_5 = L_1 \cap L_2$
- f) $L_6 = \overline{L_1 \cup L_2}$

2. Büchi automata (presented by Group 04)

Consider the following nondeterministic Büchi automata over $\Sigma = \{a, b\}$:



- a) Which of the automata are deterministic? Which are complete?
- b) For each of the automata, check whether the words aab^{ω} , a^{ω} and $(ab)^{\omega}$ are accepted. If yes, write down an accepting run.
- c) Do the two automata have the same language? Justify your answer informally.

3. Büchi automata and ω -regular languages (presented by Group 02)

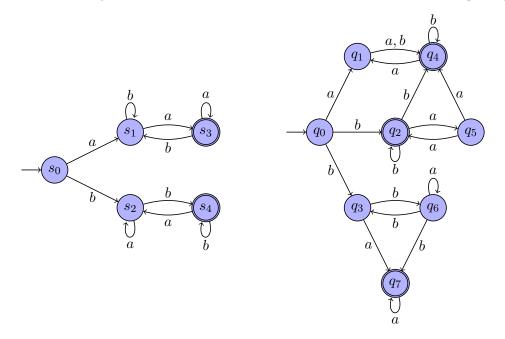
Build complete Büchi automata and ω -regular expressions for each of the following ω -regular languages over $\Sigma = \{a, b\}$. For L_3, L_4 and L_5 use the constructions of the lecture.

Hint: It may be useful to simplify intermediate automata first.

- a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \text{ each occurrence of } a \text{ in } \alpha \text{ is followed immediately by a } b \}$
- b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \text{the letter } a \text{ occurs infinitely often in } \alpha \}$
- c) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \text{the letter } b \text{ occurs finitely often in } \alpha \}$
- d) $L_4 = L_1 \cap L_2$
- e) $L_5 = L_2 \cup L_3$
- f) $L_6 = L_1 \cap L_2 \cap L_3$

4. Büchi automata and non-accepting words (presented by Group 08)

For each of the following automata, find out whether there exist words that are not accepted by them.



In case of a positive answer (there is a non-accepted word), state the word and reason informally why it is not accepted. In case of a negative answer, reason informally why there is no word that is not accepted.

5. Projection and Büchi Recognizable Languages (Challenge)

In the following, we suppose that our alphabet Σ is of the form

$$\Sigma = \Sigma_1 \times \Sigma_2 = \{ (\sigma_1, \sigma_2) \mid \sigma_1 \in \Sigma_1, \sigma_2 \in \Sigma_2 \}$$

where Σ_1 and Σ_2 are some arbitrary alphabets. Let $L \subseteq \Sigma^{\omega}$ be a language over the alphabet Σ . We define the projections $pr_1(L)$ and $pr_2(L)$ as follows:

$$pr_1(L) = \{ \alpha \in \Sigma_1^{\omega} \mid (\alpha(0), \beta(0))(\alpha(1), \beta(1))(\alpha(2), \beta(2)) \dots \in L \text{ for some } \beta \in \Sigma_2^{\omega} \}$$
$$pr_2(L) = \{ \beta \in \Sigma_2^{\omega} \mid (\alpha(0), \beta(0))(\alpha(1), \beta(1))(\alpha(2), \beta(2)) \dots \in L \text{ for some } \alpha \in \Sigma_1^{\omega} \}$$

- a) Prove that the projections $pr_1(L)$ and $pr_2(L)$ of a Büchi recognizable language L on the alphabet $\Sigma_1 \times \Sigma_2$ are Büchi recognizable.
- b) Prove that the converse is false: Construct a non-Büchi recognizable ω -language L such that both $pr_1(L)$ and $pr_2(L)$ are Büchi recognizable.

Hint: The language $L' = \{a^n b^n \mid n = 1, 2, 3, ...\}^{\omega}$ over the alphabet $\{a, b\}$ is not Büchi-recognizable. Some variation of L' is useful to construct the required language L.