Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. ω -Regular Expressions (presented by Group 06)

Represent each of the following ω -regular languages over the alphabet $\Sigma = \{a, b\}$ as deterministic Büchi automata. After that, construct an ω -regular expression from each automaton using the construction in the proof of Büchi's Characterization Theorem.

- a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \text{the maximal substrings of } \alpha \text{ consisting of only } a \text{'s have even length} \}$
- b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \text{each } a \text{ in } \alpha \text{ is preceded by a } b \}$
- c) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has no occurrence of } bab \}$

2. Deterministic Büchi Automata (presented by Group 11)

Prove or give a counterexample to the following statements:

- a) Deterministic Büchi automata are closed under \cap .
- b) Deterministic Büchi automata are closed under \cup .
- c) Deterministic Büchi automata are closed under pr_1 .

3. Limit Operation (presented by Group 05)

a) Let $V, W \subseteq \Sigma^*$ be two regular languages. Prove or give a counterexample to the following equation:

$$\overrightarrow{(V \cdot W)} = V \cdot \overrightarrow{W}$$

b) Let $\mathcal{A} = (\Sigma, Q, \{q_0\}, T, F)$ be an automaton on finite words. Let $L_* = \mathcal{L}(\mathcal{A})$ be the language of \mathcal{A} and let L_{ω} be the language of \mathcal{A} when it is regarded as a Büchi automaton, i.e., $L_{\omega} = \mathcal{L}(\mathcal{A}')$ for $\mathcal{A}' = (\Sigma, Q, \{q_0\}, T, BÜCHI(F))$. Prove or give a counterexample for the following equation:

$$L_{\omega} = \overrightarrow{L_*}$$

4. Universal Projection (presented by Group 16)

We define the following "universal flavor" of projection for $i \in \{1, 2\}$ and $L \subseteq (\Sigma_1 \times \Sigma_2)^{\omega}$:

$$rp_i(L) = \{ \alpha \in \Sigma_i^{\omega} \mid \forall \beta \in (\Sigma_1 \times \Sigma_2)^{\omega}. \, pr_i(\{\beta\}) = \{\alpha\} \Rightarrow \beta \in L \}$$

Show that if L is Büchi-recognizable, then so is $rp_i(L)$.

Hint: You might want to use that the complement of a Büchi-recognizable language is Büchi-recognizable.

5. Ultimately Periodic Words (Challenge)

An infinite word $\alpha \in \Sigma^{\omega}$ is *ultimately periodic* if there exist finite words $w_*, w_{\omega} \in \Sigma^*$ such that $\alpha = w_* w_{\omega} w_{\omega} w_{\omega} \dots$ We define the following language over the alphabet $\Sigma = \{a, b\}$:

 $L = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ is ultimately periodic} \}$

Prove or disprove that L is Büchi-recognizable.