Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Complementation of Büchi Automata (presented by Group 07)

In class, we proved a theorem stating that the complement of an ω -language over alphabet Σ , that is recognizable by a deterministic Büchi automaton, is Büchi recognizable. Unfortunately, this construction does not work for all Büchi-recognizable languages.

- a) Provide a Büchi automaton \mathcal{A} , for which the construction generates a new Büchi automaton \mathcal{A}' , where $\mathcal{L}(\mathcal{A}') \neq \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$.
- b) Your counter example is a counter example for one of the following relationships:
 - $\mathcal{L}(\mathcal{A}') \subseteq \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$
 - $\mathcal{L}(\mathcal{A}') \supseteq \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$

Prove or provide a new counter example for the other relationship not refuted by your first answer.

2. **Strictly Büchi-Recognizable Languages** (presented by Group 13)

A *strict Büchi* automaton $\mathcal{A} = (\Sigma, Q, I, T, \mathsf{STRICTBÜCHI}(F))$ is an automaton over finite words, where the acceptance condition $\mathsf{STRICTBÜCHI}(F)$ is defined by

STRICTBÜCHI(C) =
$$\{\alpha \in Q^{\omega} \mid \text{Inf}(\alpha) = F\}.$$

Proof or provide a counter example to the following statements:

- a) If L is recognizable by a strict Büchi automaton then L is Büchi-recognizable.
- b) If L is recognizable by a strict Büchi automaton then L is recognizable by a deterministic Büchi automaton.
- c) If L is Büchi-recognizable then L is strictly Büchi-recognizable.
- d) If L is recognizable by a deterministic Büchi automaton then L is strictly Büchi-recognizable.

3. **Universal Automata** (presented by Group 12)

A universal automaton $\mathcal{A}=(\Sigma,Q,I,T,Acc)$ accepts a word $\alpha\in\Sigma^{\omega}$ if all runs of \mathcal{A} on α are accepting. Compare the expressive power of deterministic, nondeterministic, and universal Büchi automata.

4. Lower Bounds on Complementation (presented by Group 03)

a) Consider the following family of Büchi automata A_n over the alphabet $\Sigma = \{1, \dots, n, \#\}$, where all states are initial states. Describe $\mathcal{L}(A_n)$.

b) Prove: For all $n \geq 1$, there is no Büchi automaton \mathcal{A}'_n with $\mathcal{L}(\mathcal{A}'_n) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A}_n)$ which has less than n! states.

Suggestion: Suppose \mathcal{A}'_n exists. Consider two distinct permutations (a_1, \ldots, a_n) and (b_1, \ldots, b_n) of $(1, \ldots, n)$. Let r_1 be an accepting run of \mathcal{A}'_n on $(a_1 \ldots a_n \#)^\omega$ and let r_2 be an accepting run of \mathcal{A}'_n on $(b_1 \ldots b_n \#)^\omega$. Show that $\operatorname{Inf}(r_1) \cap \operatorname{Inf}(r_2) = \emptyset$.

5. co-Büchi Automata (challenge question)

A co-Büchi automaton $\mathcal{A}=(\Sigma,Q,I,T,\mathtt{COB\ddot{U}CHI}(C))$ is an automaton over infinite words, where the acceptance condition $\mathtt{COB\ddot{U}CHI}(C)$ is defined by

$$COB \ddot{U}CHI(C) = \{ \alpha \in Q^{\omega} \mid Inf(\alpha) \cap C = \emptyset \},\$$

i.e., a run on A is accepting, if every state in C is visited only finitely often.

- a) Prove or disprove: an ω -regular language is co-Büchi-recognizable if and only if it is Büchi-recognizable.
- b) Prove or disprove: an ω -regular language is co-Büchi-recognizable if and only if it is recognizable by a deterministic co-Büchi automaton.