Prof. Bernd Finkbeiner, Ph.D. Problem Set 5
Felix Klein, M.Sc. Discussions: May 27th, 2015

Automata, Games, and Verification

Please send a mail to agvl5@react .uni-saarland.de if you can’t make it to the discussion session.

1. Run DAGs (presented by Group 02)

Let ¥ = {a,b,c,d} be an alphabet, &« = ddbac” be a word over this alphabet, and A be the following
Biichi automaton over X:

a,b,c,d a b,d

a) Draw the run DAG for A on . As the DAG is infinite, you only need to sketch it in a way such that
it is, intuitively, clear how it is to be continued after a certain pattern emerges.

b) Reason whether « is accepted by A.

c¢) Finally, write down the sequence of DAGs Gg 2 G1 O (2. .. as defined in the proof of Lemma 5.1
of the lecture.

2. Co-Limit Operation (presented by Group 04)
The co-limit of W is defined as WV = {a € ¥¥ | there exist only finitely many n € N s.t. «[0,n] € W}.

Let V, W C ¥* be two regular languages. Prove or give a counter example to the following statements:
D (V-W)=V-W
b) V- W is Biichi-recognizable

c) V. W is recognizable by a deterministic Biichi automaton

3. Deterministic Muller Automata (presented by Group 10)

a) Give an w-regular expression £ such that the smallest deterministic Muller automaton recognizing
L(E) is larger than the smallest nondeterministic Muller automaton recognizing £(F), and prove
this fact.

b) For all n € N, let Z,, describe the set of languages recognizable by deterministic Muller au-
tomata with at most n accepting subsets (i.e., for every language in Z,, there exists a corre-
sponding deterministic Muller automaton A = (X,Q, 1,7, MULLER(F)) with |[F| < n). Ob-
viously, Z1 C Zs C Zs C ... holds. Prove that this sequence of inequalities is strict, i.e.,
71 C Zy C Zg C ... holds as well.



4. More Acceptance Conditions (presented by Group 14)

Besides Biichi and Muller automata, there are three further important automata types:

e A parity automaton is an automaton (3, Q, I, T, PARITY(c)) with the parity acceptance condition
PARITY (c) defined for a coloring function c: @) — N by

PARITY(c) = {a € Q¥ | max{c(q) | ¢ € Inf(«r)} is even}.

e A Rabin automaton is an automaton (3, Q, I, T,RABIN({(A;, R;) | ¢ € J})) with the Rabin ac-
ceptance condition RABIN({(A;, R;) | j € J}) defined for a set of indices .J and sets A;, R; for
each j € J by

RABIN({(4;,R;) | j€ J}) ={a € Q¥ |3j € J Inf(e) N A; # () and Inf(a) N R; = 0}

e A Streett automaton is an automaton (X, Q, I, T, STREETT({(A;, R;) | i € J})) with the Streett
acceptance condition STREETT({(A;, R;) | j € J}) defined for a set of indices J and sets A;, R;
for each j € J by

STREETT({(A4;,R;) | j € J}) ={a € Q¥ |Vj € J. Inf(a) N Aj # 0 or Inf(a) N R; = 0}

Compare the expressive power of Biichi, Muller, Rabin, Streett and parity automata. Which automata
types are equally expressive? Which are less expressive than others? Provide proofs for all your claims.

5. Complementation of Biichi automata via Biichi’s Characterization Theorem (Challenge)

In this problem, we develop an alternative to the complementation construction from Lectures 4 and 5.
Let A be a nondeterministic Biichi automaton over the alphabet 3.

a) Show that X* can be represented as a finite union Uz‘:l,... » Vi - Wi¥ such that
e foralli =1,...,n: V; and W; are regular languages V;, W; C >*, and
e foralli =1,...,n,either V;- W¥ N L(A) =0orV; - W C L(A).

(Suggestion: For a finite word w, consider (1) the pairs of states of .4 that are connected by a path
labeled with w, and (2) the pairs of states of A that are connected by a path that visits an accepting
state and that is labeled with w. Let two finite words be equivalent if they agree on these pairs.
Show that the equivalence classes can be represented as finite-word automata.)

b) Use Biichi’s characterization theorem to argue that there exists a nondeterministic Biichi automaton
A’ such that L(A") = X¢\ L(A).

¢) Prove or disprove the following claim for regular languages V, W C ¥*:

EEANV-WE) = (EA\V) - (EA W)Y



