Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Deterministic Automata (presented by Group 14)

Compare the expressive power of *deterministic* Muller, Rabin, Streett and parity automata.

2. LTL & Determininistic Automata (presented by Group 13)

- a) Compare the expressive power of LTL and deterministic Büchi automata.
- b) Compare the expressive power of LTL and deterministic co-Büchi automata.

3. Weak Until (presented by Group 01)

Consider the new *weak until* operator W, whose semantics are defined as follows:

 $\alpha \models \varphi_1 \mathcal{W} \varphi_2 \text{ iff } \forall i \geq 0. \ \alpha[i, \infty] \models \varphi_1 \text{ or } \exists j < i. \ \alpha[j, \infty] \models \varphi_2$

Show that $\{\neg, \land, \bigcirc, \mathcal{W}\}$ is an operator basis for LTL, i.e., show that you can express every LTL formula φ as an equivalent LTL formula φ' , in which apart from atomic propositions, only the operators \neg, \land, \bigcirc and \mathcal{W} are used.

4. LTL & Nondeterministic Automata (presented by Group 11)

Prove or give a counter-example to the following statements: For every LTL formula φ there exists

- a) a nondeterministic Büchi automaton \mathcal{A}_{φ} with a *single* accepting state such that $\mathcal{L}(\mathcal{A}_{\varphi}) = \mathcal{L}(\varphi)$.
- b) a nondeterministic co-Büchi automaton \mathcal{A}'_{φ} such that $\mathcal{L}(\mathcal{A}'_{\varphi}) = \mathcal{L}(\varphi)$.
- c) a nondeterministic co-Büchi automaton \mathcal{A}_{φ}'' with a *single* accepting state such that $\mathcal{L}(\mathcal{A}_{\varphi}'') = \mathcal{L}(\varphi)$.

5. Temporal Operators (Challenge)

Show that $\{\neg, \land, \bigcirc, \bigcirc, \square\}$ is *not* an operator basis for LTL.

Suggestion: Find two families of label sequences α_n, β_n , and an LTL formula φ , such that

- a) for every n, we have that $\alpha_n \models \varphi$ and $\beta_n \not\models \varphi$,
- b) but for every LTL formula ψ without \mathcal{U} , there is an n, such that either $\alpha_n \models \psi$ and $\beta_n \models \psi$, or $\alpha_n \not\models \psi$ and $\beta_n \not\models \psi$.