Prof. Bernd Finkbeiner, Ph.D. Felix Klein, M.Sc.

Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Consider the LTL formula $\varphi = \Box \diamondsuit (\neg(a \mathcal{U} b))$ over the alphabet $2^{\{a,b\}}$ and the alternating Büchi automaton \mathcal{A} given below. Does $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$ hold?

 \Box Yes \Box No

2. Consider the alternating Büchi automaton \mathcal{A} below. Which of the following are true?

- \square For all $\alpha \in \mathcal{L}(\mathcal{A})$ there is a run tree on α that is not memoryless.
- \Box For all $\alpha \notin \mathcal{L}(\mathcal{A})$ there is a run tree on α that is not memoryless.
- \Box There is some $\alpha \in \Sigma^{\omega}$ such that all run trees on α are memoryless.
- \Box There is some $\alpha \in \Sigma^{\omega}$ such that all run trees on α are not memoryless.
- 3. Let \mathcal{A} be some alternating Büchi automaton. Can there be words $\alpha \in \mathcal{L}(\mathcal{A})$ that have an accepting run tree on \mathcal{A} , but no accepting run DAG?
 - \Box True \Box False
- 4. There is an alternating Büchi automaton A and some word α accepted by A via some memoryless run r, whose corresponding run DAG is finite.
 - \Box True \Box False
- 5. Is there some accepting condition Acc and some alternating automaton $\mathcal{A} = (\Sigma, Q, q_0, \delta, Acc)$ such that $\mathcal{L}(\mathcal{A})$ is non-empty and no word α accepted by \mathcal{A} has a memoryless run tree?
 - \Box Yes \Box No
- 6. There is an alternating Büchi automaton \mathcal{A} and some word α such that there are infinitely many accepting run DAGs of \mathcal{A} on α .
 - \Box True \Box False