Prof. Bernd Finkbeiner, Ph.D. Felix Klein, M.Sc.

Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Let $\mathcal{G} = (\mathcal{A}, \text{BUCHI}(F))$ be a Buchi game and $n \in \mathbb{N}$. Which of the following are true?

$\square \ Recur^{n+1}(F) \subseteq Recur^n(F)$	$\Box \ W_1^{n+1} \subseteq W_1^n$	$\square W_1(\mathcal{G}) = \bigcup_{m \in \mathbb{N}} W_1^m$
$\Box \ Recur^n(F) \subseteq Recur^{n+1}(F)$	$\Box \ W_1^n \subseteq W_1^{n+1}$	$\square W_1(\mathcal{G}) = \bigcap_{m \in \mathbb{N}} W_1^m$

2. Consider the parity game given below, where each position is marked with its color. Which values can you choose for x and y such that

Player 0 wins from each position:

y^{χ}	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Player 1 wins from each position:

y^{χ}	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

3. Which games, equipped with one of the following winning conditions, are memoryless determined?

 \Box Reachability \Box Büchi \Box Street \Box Rabin \Box Parity \Box Muller

4. Consider a modified version of the parity winning condition PARITY⁺, which additionally enforces that each play has to visit each successor of a position v if v is visited at all, i.e., we have

$$\mathsf{PARITY}^+(c) = \mathsf{PARITY}(c) \cap \{\rho \in V^{\omega} \mid \forall e \in (E \cap (\mathsf{Occ}(\rho) \times V)) : \exists n \in \mathbb{N} : e = (\rho(n), \rho(n+1)) \}.$$

Now let $\mathcal{G} = (\mathcal{A}, \text{PARITY}(c))$ be a normal parity game and $\mathcal{G}' = (\mathcal{A}, \text{PARITY}^+(c))$ be its modified version. Which are valid choices for \circ_1 and \circ_2 such that $W_0(\mathcal{G}) \circ_1 W_0(\mathcal{G}')$ and $W_1(\mathcal{G}) \circ_2 W_1(\mathcal{G}')$?

$\Box \circ_1 \in \{=\}$	$\Box \circ_1 \in \{\subseteq\}$	$\Box \circ_1 \in \{\supseteq\}$	$\Box \circ_1 \in \{\neq\}$
$\Box \circ_2 \in \{=\}$	$\Box \circ_2 \in \{\subseteq\}$	$\Box \circ_2 \in \{\supseteq\}$	$\Box \circ_2 \in \{\neq\}$

5. Consider some winning condition Win and some transformation t on Win such that for the games $\mathcal{G} = (\mathcal{A}, Win)$ and $\mathcal{G}' = (\mathcal{A}, t(Win))$ we have that $W_0(\mathcal{G}) = W_1(\mathcal{G}')$ and $W_1(\mathcal{G}) = W_0(\mathcal{G}')$. For which of the following types of winning conditions does a transformation t exist such that its type is preserved by t?

□ Reachability □ Büchi □ Street □ Rabin □ Parity □ Muller