Prof. Bernd Finkbeiner, Ph.D. Felix Klein, M.Sc.

## Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Consider the Büchi tree automaton A and the  $\{a, b, c\}$ -labeled input tree given below. How does the marked level in the corresponding run tree look like?



2. Consider the parity tree automaton below, where we denote a transition  $(q, \sigma, q_1, q_2)$  by an outgoing edge that splits up to the two target states. Further, the edge relation is symmetric, i.e., if  $(q, \sigma, q_1, q_2) \in T$  then also  $(q, \sigma, q_2, q_1) \in T$  for all  $q, q_1, q_2 \in Q$  and  $\sigma \in \Sigma$ . Which of the following input trees  $t_i$  for  $0 \le i \le 5$  are accepted by the automaton?



- $\Box t_0 \in \{t \in T_{\{a,b\}} \mid \text{every branch of } t \text{ has only finitely many } b's\}$
- $\Box t_1 \in \{t \in T_{\{a,b\}} \mid \text{every branch of } t \text{ has only finitely many } a's\}$
- $\Box$   $t_2 \in \{t \in T_{\{a,b\}} | \text{ every branch of } t \text{ has only } b$ 's}
- $\Box$   $t_3 \in \{t \in T_{\{a,b\}} \mid \text{every branch of } t \text{ has only } a's\}$
- $\Box$   $t_4 \in \{t \in T_{\{a,b\}} | \text{ every branch of } t \text{ has infinitely many } a's \}$
- $\Box t_5 \in \{t \in T_{\{a,b\}} \mid \text{every branch of } t \text{ has infinitely many } b\text{'s}\}$
- 3. Let  $\mathcal{A}$  be some arbitrary nondeterministic parity tree automaton. Which of the following statements is true? There exists a deterministic parity tree automaton  $\mathcal{A}'$  such that
  - $\Box \ \mathcal{L}(\mathcal{A}') \supseteq \mathcal{L}(\mathcal{A})$
  - $\Box \ \mathcal{L}(\mathcal{A}') \supseteq \mathcal{L}(\mathcal{A}) \land (\mathcal{L}(\mathcal{A}') \neq \emptyset \Rightarrow \mathcal{L}(\mathcal{A}) \neq \emptyset)$
  - $\Box \ \mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$
  - $\Box \ \mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A}) \land (\mathcal{L}(\mathcal{A}) \neq \emptyset \Rightarrow \mathcal{L}(\mathcal{A}') \neq \emptyset)$