Automata, Games, and Verification

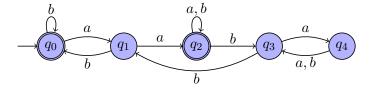
Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Who is Julius Richard Büchi?

 \Box the lecturer \Box a Swiss logician and mathematician \Box

 \square a Greek philosopher

- 2. Which of the following are Büchi automata?
 - $\Box \ (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset) \qquad \Box \ (\{a, b\}, \mathbb{N}, \mathbb{N}^+, \emptyset, \emptyset) \qquad \Box \ (\{a, b\}, \{q\}, \{q\}, \{q, a, q)\}, \{q\})$
- 3. Is $r = q_1 q_2 q_3 q_1 q_0^{\omega} \dots$ an accepting run of the word ab^{ω} on the Büchi automaton depicted below?



 \Box Yes \Box No

4. Which of the following are true?

- $\Box \ \forall w \in \Sigma^*. \ \forall \alpha \in \Sigma^\omega. \ \operatorname{Inf}(w\alpha) = \operatorname{Inf}(\alpha) \qquad \Box \ \forall w \in \Sigma^*. \ \exists \alpha \in \Sigma^\omega. \ \operatorname{Inf}(w\alpha) = \operatorname{Inf}(\alpha) \\ \Box \ \forall w \in \Sigma^*. \ \exists \alpha \in \Sigma^\omega. \ \operatorname{Inf}(w\alpha) \neq \operatorname{Inf}(\alpha) \qquad \Box \ \forall w \in \Sigma^*. \ \forall \alpha \in \Sigma^\omega. \ \operatorname{Inf}(w\alpha) \neq \operatorname{Inf}(\alpha)$
- 5. Is there for every complete Büchi automaton an equivalent "incomplete" Büchi automaton?
 - \Box Yes \Box No

6. Is
$$ab(c + (c + d^*) + d^*)(a + b)(a + c^*)(a + b)^*(a^* + b + (c + d)^*)^{\omega}$$
 regular?

- \Box Yes \Box No
- 7. Let $\mathcal{A} = (\{a, b\}, \{a, b\}, \{a\}, \{(a, a, a), (a, b, b), (b, b, b), (b, a, a)\}$, BÜCHI $(\{a, b\})$) be a Büchi automaton. Holds $\mathcal{L}(\mathcal{A}) = \mathcal{L}((ab)^{\omega} + (bb)^{\omega} + (ba)^{\omega} + (aa)^{\omega})$?
 - \Box Yes \Box No
- 8. Which of the following are no ω -regular expressions?
 - $\Box \ aaa^*b^{\omega} \qquad \Box \ aa(a^*b)^{\omega} \qquad \Box \ bb(ab^{\omega} + ba^{\omega})$
 - $\Box \ a^{\omega}b^* \qquad \Box \ (a^*+b^{\omega}+c^*)^{\omega} \qquad \Box \ aa^*(ab^*bb)^{\omega}$
- 9. A Büchi automaton \mathcal{A} accepts an infinite word α iff

 \Box there is an accepting run of α on \mathcal{A} . \Box all runs of α on \mathcal{A} are accepting.

- 10. Consider the Büchi automata $\mathcal{A}_1 = (\Sigma, Q_1, I_1, T_1, \mathsf{BUCHI}(F_1)), \mathcal{A}_2 = (\Sigma, Q_2, I_2, T_2, \mathsf{BUCHI}(F_2))$ and $\mathcal{A} = (\Sigma, Q_1 \times Q_2, I_1 \times I_2, \{((q_1, q_2), \sigma, (q'_1, q'_2)) \mid \forall i \in \{1, 2\}, (q_i, \sigma, q'_i) \in T_i\}, \mathsf{BUCHI}(F_1 \times F_2)).$ Which of the following languages are equivalent to $\mathcal{L}(\mathcal{A})$?
 - $\Box \ \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2) \qquad \Box \ \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) \qquad \Box \ \mathcal{L}(\mathcal{A}_1) \setminus \mathcal{L}(\mathcal{A}_2)$