Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

- 1. The language of $bb^{\omega} + ((ab)^+ + (ba)^+ + (aa)^+)^{\omega}$ is recognizable by a deterministic Büchi automaton.
 - \Box True \Box False
- 2. The complement of the language of $bb^{\omega} + ((ab)^+ + (ba)^+ + (aa)^+)^{\omega}$ is recognizable by a deterministic Büchi automaton.
 - \Box True \Box False
- 3. For each $W \subseteq \Sigma^*$ there exist infinitely many different $W' \subseteq \Sigma^*$ s.t. $\overrightarrow{W} = \overrightarrow{W'}$.
 - \Box True \Box False
- 4. For each Büchi-recognizable language $L \subseteq \Sigma^{\omega}$ there exists a language $W \subseteq \Sigma^*$ s.t. $L = \overrightarrow{W}$.

 \Box True \Box False

5. Let *L* be the set of Büchi-recognizable languages, *A* the set of languages which are not recognizable by a deterministic Büchi automaton, and *B* the set of languages whose complements are not recognizable by a deterministic Büchi automaton. Which of the following are true.

 $\Box \ A \neq B \qquad \Box \ A \cap B \neq \emptyset \qquad \Box \ A \cup B \neq L \qquad \Box \ A \subseteq B$

6. If L is recognizable by an automaton over finite words, then L^{ω} is Büchi-recognizable.

 \Box True \Box False

- 7. Which of the following constructions preserve determinism, i.e., starting from a deterministic Büchi automaton (automaton over finite words), we obtain again a deterministic Büchi automaton after applying the construction?
 - \Box Constr. 3.1 \Box Constr. 3.2 \Box Constr. 3.3 \Box Constr. 3.5
- 8. Which of the following languages are not recognizable by deterministic Büchi automata?

$$\Box ((ab^*a)^* + (ba^*b)^*)^{\omega} \qquad \Box (b+ab)^*(ab+b)^{\omega}$$
$$\Box ((a^*b)^*(b^*a)^*)^{\omega} \qquad \Box (ab+aab)^*(ba)^{\omega}$$

9. Let \mathcal{A} and \mathcal{A}' be automata over finite words over the common alphabet Σ such that $\mathcal{L}(\mathcal{A}) = \Sigma^* \setminus \mathcal{L}(\mathcal{A}')$. Which of the following are true?

$$\Box \ \overrightarrow{\mathcal{L}(\mathcal{A})} = \Sigma^{\omega} \setminus \overrightarrow{\mathcal{L}(\mathcal{A}')} \qquad \Box \ \overrightarrow{\mathcal{L}(\mathcal{A})} \subseteq \Sigma^{\omega} \setminus \overrightarrow{\mathcal{L}(\mathcal{A}')} \qquad \Box \ \overrightarrow{\mathcal{L}(\mathcal{A})} \supseteq \Sigma^{\omega} \setminus \overrightarrow{\mathcal{L}(\mathcal{A}')}$$

- 10. Is there a language $L \subseteq \Sigma^{\omega}$ such that both L and $\Sigma^{\omega} \setminus L$ are Büchi-recognizable languages, but neither is recognizable by a deterministic Büchi automaton?
 - \Box Yes \Box No