Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

1. Which of the following are true?

 \Box Each level ranking is a ranking. \Box Each ranking is a level ranking.

2. Consider the automaton \mathcal{A}' of Construction 5.1, constructed from a given Büchi automaton \mathcal{A} . If \mathcal{A} has n states, then \mathcal{A}' has exactly

$\Box \ 2 \cdot n^2$ states.	$\square 2^{n+1} \cdot n^2$ states.	$\Box \ 2^{n+1} \cdot n^2 + 2^{n+1} \cdot n \text{ states.}$
$\square 2^{n+1}$ states.	$\Box 2^n \cdot n^2$ states.	$\Box 2^{n+1} \cdot n^2 + 2^n \cdot n$ states.

3. Let $\mathcal{A} = (\Sigma, Q, I, T, \text{MULLER}(\mathcal{F}))$ be a Muller automaton and $Q = \{q_0\}$ be a singleton set. How many languages can you express by choosing I, T and \mathcal{F} ?

\Box 1	\Box 2	$\Box \Sigma $	$\square 2 \Sigma $	$\Box 2^{ \Sigma }$	$\Box \ 2^{ \Sigma } + 1$
$\square 2^{ \Sigma +1}$	$\square 2^{ \Sigma +2}$	$\Box \ 2^{ \Sigma } + 2$			

4. Which language does the Muller automaton $\mathcal{A} = (\Sigma, Q, I, T, \text{MULLER}(\{\emptyset\}))$ accept?

 $\Box \Sigma^{\omega} \qquad \Box \emptyset \qquad \Box \text{ it depends}$

5. Let $\mathcal{A}_1 = (\Sigma, Q_1, I_1, T_1, \text{MULLER}(\mathcal{F}_1))$ and $\mathcal{A}_2 = (\Sigma, Q_2, I_2, T_2, \text{MULLER}(\mathcal{F}_2))$ be two Muller automata with $Q_1 \cap Q_2 = \emptyset$ and let the Muller automaton \mathcal{A} be defined by

$$\mathcal{A} = (\Sigma, Q_1 \cup Q_2, I_1 \cup I_2, T_1 \cup T_2, \text{muller}(\mathcal{F}_1 \cup \mathcal{F}_2)).$$

Does $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$ hold?

 \Box Yes \Box No

6. Consider Construction 6.2 of the lecture notes. Which of the following alternative definitions for F' are also correct with respect to Theorem 6.2?

$$\Box F' = \bigcup_{i=1}^{n} \{ (i, \max(F_i), \max(F_i)) \} \qquad \Box F' = \bigcup_{i=1}^{n} \bigcup_{q \in F_i} \{ (i, q, q) \}$$
$$\Box F' = \bigcup_{i=1}^{n} \{ (i, \min(F_i), \max(F_i)) \} \qquad \Box F' = \bigcup_{i=1}^{n} \bigcap_{q \in F_i} \{ (i, q, q) \}$$

7. Consider the Büchi automaton \mathcal{A}' of Construction 6.2, constructed from the Muller automaton \mathcal{A} . Is every run of \mathcal{A} also a run of \mathcal{A}' ?

 \Box Yes \Box No

8. Consider the following alternative method to complement a deterministic Büchi automaton A. We first translate A into a Muller automaton, then complement this Muller automaton and then translate it back into a Büchi automaton. Let A' be the Büchi automaton resulting from Construction 5.1 and A'' be the Büchi automaton resulting from aforementioned construction. Which of the following are true?

 \Box There is a deterministic Büchi automaton \mathcal{A} such that \mathcal{A}' has less states than \mathcal{A}'' .

 \Box There is a deterministic Büchi automaton \mathcal{A} such that \mathcal{A}'' has less states than \mathcal{A}' .