Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

- 1. Every deterministic Büchi automaton is semi-deterministic.
 - \Box True \Box False
- 2. Consider the construction of a semi-deterministic Büchi automaton \mathcal{A}' from a given Büchi automaton $\mathcal{A} = (\Sigma, Q, I, T, BÜCHI(F))$, as given in the lecture. The number of *accepting* states of \mathcal{A}' is

super-exponential in	$\Box Q .$	$\Box F .$
exponential in	$\Box Q .$	$\Box F .$
quadratic in	$\Box Q .$	$\Box F .$
linear in	$\Box Q .$	$\Box F .$
equal to	$\Box Q .$	$\Box F .$

3. The languages recognizable by a semi-deterministic Büchi automaton are closed under \cup .

 \Box True \Box False

4. The languages recognizable by a semi-deterministic Büchi automaton are closed under \cap .

 \Box True \Box False

5. Let $\mathcal{A}' = (\Sigma, Q', I', T', BÜCHI(F'))$ be a semi-deterministic automaton constructed from a Büchi automaton $\mathcal{A} = (\Sigma, Q, I, T, BÜCHI(F))$ as given in the lecture. Which of the following are true?

 $\begin{array}{lll} \square \ \exists \mathcal{A}. \ \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}') & \square \ q \in Q \text{ is reachable } \Rightarrow \ (\{q\}, \emptyset) \in Q' \text{ is reachable} \\ \square \ \forall \mathcal{A}. \ \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}') & \square \ (\{q\}, \emptyset) \in Q' \text{ is reachable } \Rightarrow \ q \in Q \text{ is reachable} \\ \square \ q \in F \ \Rightarrow \ \exists L_1, L_2, L_1', L_2' \subseteq Q, \sigma \in \Sigma. \ q \in L_2' \ \land \ ((L_1, L_2), \sigma, (L_1', L_2')) \in T' \end{array}$

- 6. A run of a parity automaton is accepting iff $\max\{c(q) \mid q \in \text{Inf}(\alpha)\}$ is even. The expressiveness of parity automata does not change iff we change
 - $\Box \text{ max to min.} \qquad \Box \text{ even to odd.} \qquad \Box q \in \text{Inf}(\alpha) \text{ to } q \in Q.$ $\Box q \in \text{Inf}(\alpha) \text{ to } q \in Q \setminus \text{Inf}(\alpha).$
- 7. Consider the construction of a deterministic Muller automaton $\mathcal{A}' = (\Sigma, Q', \{q_0\}, T', \text{MULLER}(\mathcal{F}))$ from a semi-deterministic Büchi automaton $\mathcal{A} = (\Sigma, Q, I, T, \text{BÜCHI}(F))$, as given in the lecture. Then $\mathcal{F} = \{F' \subseteq Q' \mid \exists i \in 1, ..., 2m \mid ...$

 $\Box \dots \forall (N', f) \in F'. f(i) \neq _ \} \qquad \Box \dots \exists (N', f) \in F'. f(i) \notin F \}$ $\Box \dots \forall (N', f) \in F'. f(i) = _ \} \qquad \Box \dots \exists (N', f) \in F'. f(i) \in F \}$ $\Box \dots \forall (N', f) \in F'. f(i) \neq _ \lor f(i) \notin F \}$

8. Consider the construction of a deterministic Muller automaton $\mathcal{A}' = (\Sigma, Q', \{q_0\}, T', \text{MULLER}(\mathcal{F}))$ from a semi-deterministic Büchi automaton $\mathcal{A} = (\Sigma, Q, I, T, \text{BÜCHI}(F))$, as given in the lecture. Do we conceptually need the additional "_" element, as used in this construction, or is it just introduced to make the formulation of the construction simpler?

 \Box Yes \Box No