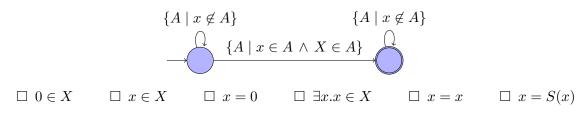
Automata, Games, and Verification

Please send a mail to agv15@react.uni-saarland.de if you can't make it to the discussion session.

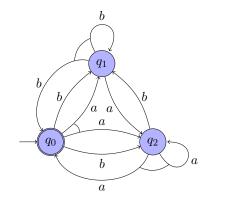
- 1. Which of the following S1S-formulas are $S1S_0$ formulas?
 - $\begin{array}{ll} \Box \ \exists x. \ \neg(x \in Y \lor x = S(0)) & \Box \ \exists X. \ y \in X \lor y = S(y) \lor 0 \in X \\ \Box \ \exists x. \ (x \in X \land \exists x. \ x = y) & \Box \ \exists x. \ S(S(S(S(x)))) = 0 \\ \Box \ \neg(x \lor \neg(y \lor \neg(\exists Y. \ x = S(y)))) & \Box \ 0 \in X \lor S(0) \in X \lor S(S(0)) \in X \end{array}$
- 2. Consider the Büchi automaton below. Which of the following S1S formulas define the same language?



Let φ be a S1S formula over the first-order variables V₁ and the second-order variables V₂ and let V'₁ ⊆ V₁ and V'₂ ⊆ V₂ be the corresponding free first- and second-order variables, respectively. Furthermore, let y, z and z' be fresh first-order variables, i.e., {y, z, z'} ∩ V₁ = ∅. Select a minimal subset of the following rules, which suffices to eliminate all free first-order variables from φ without changing the language? For each free first-order variable X ∈ V'₁ of φ do:

1 /

- \square Replace each *X* in φ by the first-order variable *y* and add *y* to *V*₁.
- \square Replace each sub-formula X = t and t = X in φ by $t \in X$ for any term t.
- \Box Interpret X as second-order variable, i.e. move X from $V_1(V_1')$ to $V_2(V_2')$.
- \square Replace each sub-formula t = S(X) and S(X) = t in φ by $S(t) \in X$ for any term t.
- \Box Convert φ to an equivalent S1S₀ formula.
- \Box Apply the rule $\psi \mapsto \psi \land \exists z. z \in X \land \forall z'. z' \in X \to z' = z$ and add z, z' to V_1 .
- \square Replace each sub-formula $X \in Y$ in φ by $X \subseteq Y$.
- \Box Apply the rule $\psi \mapsto \exists y. y \in X \land \forall z. z \in X \rightarrow y = z \land \psi$ and add y, z to V_1 .
- 4. Every deterministic Büchi automaton is an alternating Büchi automaton.
 - \Box True \Box False
- 5. Consider the following alternating Büchi automaton \mathcal{A} . Does there exist a word $\alpha \in \{a, b\}^{\omega}$ that has an accepting run tree on \mathcal{A} ?



 \Box Yes \Box No