Decision Procedures for Verification

Homework 4

Problem 1

Consider the following procedure BASIC presented in class.

```
procedure basic(phi, alpha) {
  if ([phi | alpha] is empty) return SAT;
  if ([phi | alpha] contains an empty clause) return UNSAT
  Pick a letter p in [phi | alpha]
  if (basic(phi, alpha p) = SAT)
    return SAT
  else
    return basic(phi, alpha ~p)
}
```

- (a) Prove that BASIC is terminating.
- (b) Prove that $\Phi \mid \alpha$ is satisfiable iff $BASIC(\varphi, \alpha)$ returns SAT
- (c) Using (b), show how to use BASIC in order to check whether a CNF Φ is satisfiable or not.

Problem 2

Is the following algorithm terminating? Why?

```
procedure basic2(phi, alpha) {
  if ([phi | alpha] is empty) return SAT;
  if ([phi | alpha] contains an empty clause) return UNSAT
  Pick a letter p in phi
  if (basic2(phi, alpha p) = SAT)
    return SAT
  else
    return basic2(phi, alpha ~p)
}
```

Problem 3

Consider the resolution rule

$$\frac{C \vee p}{D \vee \neg p}$$
$$\frac{C \vee D}{C \vee D}$$

A resolution derivation of a CNF Φ is a sequence C_1, \ldots, C_n of clauses such that, for each $i=1,\ldots,n$, either $C_i\in\Phi$, or C_i has been obtained by means of the resolution rule from some C_j, C_k , with j,k< i.

A resolution proof of a CNF Φ is a resolution derication C_1, \ldots, C_n such that C_n is the empty clause.

In this homework we prove that resolution is sound and complete.

- (a) Let C_1, \ldots, C_n be a resolution derivation of Φ . Assume that Φ is satisfiable. By induction on k, prove that $C_1 \wedge \cdots \wedge C_k$ is satisfiable, for every $k \leq n$.
- (b) Using (a), prove that resolution is **sound**, that is, prove that if there exists a resolution proof of Φ , then Φ is unsatisfiable.
- (c) Using the results of Problem 1, and what was said in class, prove that resolution is **complete**, that is, prove that if Φ is unsatisfiable, then there exists a resolution derivation of Φ .
- (d) As it is described in this problem, is resolution terminating? Why?