Entscheidungsprozeduren für Verifikation

Aufgabe 5

Übung 1

Betrachten Sie das Kalkül, das die folgende Regeln beinhaltet:

$$\frac{s \approx t}{t \approx t} \qquad \frac{s \approx t}{t \approx s} \qquad \frac{t \approx u}{s \approx u}$$

$$s_1 \approx t_1$$

$$\vdots$$

$$\vdots$$

$$s_n \approx t_n$$

$$f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)$$

$$\frac{t \approx u}{s \approx u}$$

$$\vdots$$

$$s_n \approx t_n$$

$$p(s_1, \dots, s_n)$$

$$p(t_1, \dots, t_n)$$

 $s \approx t$

Sei Γ eine Konjunktion von Literalen. Eine Ableitung von Γ ist eine Reihe ℓ_1, \ldots, ℓ_n von Literalen, sodass für alle $i = 1, \ldots, n$, entweder $\ell_i \in \Gamma$ oder ℓ_i aus vorige Literalen durch inrgendeine Regel erhalten worden ist.

Ein Beweis von Γ ist eine Ableitung von Γ , die zwei widersprechende Literalen $\ell, \neg \ell$ enthält.

- (a) Nachweisen Sie dass das Kalkül korrekt ist, nämlich dass ob Γ eine Konjunction von Literalen ist und $\mathcal P$ ein Beweis von Γ ist, dann Γ unerfüllbar ist
- (b) Nachweisen Sie dass das Kalkül vollständig ist, nämlich dass ob Γ eine unerfüllbare Konjunktion von Literalen ist, dann es ein Beweis \mathcal{P} von Γ gibt.
- (c) Nachweisen Sie dass das Kalkül nicht immer terminiert.
- (d) Finden Sie geeignete Beschränkungen auf die Regeln, sodass das Kalkül sowohl vollständing als auch terminierend wird.