
Chapter 2

Equality

Decision Procedures
Last update of lecture notes: Tuesday, March 7, 2006
Last update of this chapter: Monday, February 27, 2006

2.1 The modelclass

2.1.1 Definition
Let Σ be a signature. The modelclass of equality over Σ is the modelclass

MΣ
≈

= (Σ,A) ,

where A is the class of all Σ-structures.

2.1.2 Proposition
Every Σ-formula ϕ is MΣ

≈
-valid if and only if it is valid.

Proof. Immediate.

2.1.3 Proposition
Every Σ-formula ϕ is MΣ

≈
-satisfiable if and only if it is satisfiable.

Proof. Immediate.

2.2 Congruence closure

2.2.1 Definition
Let T be a set of terms. A congruence relation of T is a binary relation R
of T satisfying the following properties:

1. R is an equivalence relation of T .

2. If (si, ti) ∈ R, for i = 1, . . . , n, and f(s1, . . . , sn), f(t1, . . . , tn) ∈ T then
(f(s1, . . . , sn), f(t1, . . . , tn)) ∈ R.

Copyright c© 2006 Calogero G. Zarba 9

10 Chapter 2. Equality

2.2.2 Definition
Let T be a set of terms, and let R be a binary relation of T . The congruence
closure of R with respect to T is the unique binary relation C of T satisfying
the following properties:

1. C is a congruence relation of T .

2. If R′ is a congruence relation of T and R ⊆ R′ then C ⊆ R′.

2.2.3 Definition
Let T be a set of terms. A binary relation R of T is well-sorted if

(s, t) ∈ R =⇒ s and t have the same sort , for all s, t ∈ T .

2.2.4 Proposition
Let T be a set of terms, and let R be a binary relation of T . Assume that R is

well-sorted. Then the congruence closure C of R with respect to T is well-sorted.

Proof. Let

R′ = C \ {(s, t) ∈ C | s and t do not have the same sort} .

By construction, R′ is a well-sorted congruence relation of T such that R ⊆ R′ ⊆
C. But then, C ⊆ R′, which implies R′ = C. It follows that C is well-sorted.

2.2.5 Algorithm (is-satisfiable-equality)
Input: A conjunction Γ of Σ-literals
Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

1: function is-satisfiable-equality(Γ)
2: T ← the set of all terms occurring in Γ
3: R← {(s, t) ∈ T × T | the literal s ≈ t is in Γ}
4: C ← the congruence closure of R with respect to T
5: if there exist a literal s 6≈ t in Γ such that (s, t) ∈ C then
6: return unsatisfiable

7: else if there exists literals p(s1, . . . , sn) and ¬p(t1, . . . , tn) in Γ such that
(si, ti) ∈ C, for i = 1, . . . , n then

8: return unsatisfiable

9: else
10: return satisfiable

11: end if
12: end function

2.2.6 Proposition
If Algorithm is-satisfiable-equality terminates at line 10, returning satisfiable,

then Γ is satisfiable.

Proof. Assume that Algorithm is-satisfiable-equality terminates at line 10,
returning satisfiable, We construct a Σ-interpretation A over vars(Γ) as fol-
lows.

2.2. Congruence closure 11

For each sort σ ∈ ΣS such that Tσ = ∅, fix some arbitrary object aσ.
Moreover, for each sort σ ∈ ΣS such that Tσ 6= ∅, fix a term tσ ∈ Tσ.

Then, for each σ ∈ ΣS, we let

Aσ =

{

Tσ/C , if Tσ 6= ∅ ,

{aσ} , otherwise .

Moreover, we let

• for variables x ∈ vars(Γ):
xA = [x]C

• for constant symbols c ∈ ΣC:

cA =

{

[c]C , if c ∈ T ,

[tσ]C , otherwise .

• for function symbols f ∈ ΣF:

fA([t1]C , . . . , [tn]C) =

[f(s1, . . . , sn)]C ,
if f(s1, . . . , sn) ∈ T and

(si, ti) ∈ C, for all i = 1, . . . , n ,

[tσ]C , otherwise .

• for predicate symbols p ∈ ΣP:

([t1]C , . . . , [tn]C) ∈ pA ⇐⇒
a literal p(s1, . . . , sn) is in Γ and
(si, ti) ∈ C, for all i = 1, . . . , n .

By structural induction, one can verify that

tA = [t]C , for all t ∈ T .

Next, we prove that A satisfies all literals in Γ.

• Literals of the form s ≈ t.

Let the literals s ≈ t be in Γ. Then (s, t) ∈ R which implies (s, t) ∈ C.
Thus, sA = [s]C = [t]C = tA.

• Literals of the form s 6≈ t.

Suppose, by contradiction, that sA = tA. It follows that [s]C = [t]C . But
then, the algorithm would have ended at line 6 returning unsatisfiable.

• Literals of the form p(t1, . . . , tn).

By construction, ([t1]C , . . . , [tn]C) ∈ pA, which implies that (tA1 , . . . , tAn) ∈
pA.

12 Chapter 2. Equality

• Literals of the form ¬p(t1, . . . , tn).

Suppose, by contradiction, that (tA1 , . . . , tAn) ∈ pA. It follows that ([t1]C , . . . , [tn]C) ∈
pA. Therefore, there exists a literal p(s1, . . . , sn) in Γ such that (si, ti) ∈ C,
for all i = 1, . . . , n. But then, the algorithm would have ended at line 8
returning unsatisfiable.

2.2.7 Proposition
If Algorithm is-satisfiable-equality terminates at either line 6 or line 8,

returning unsatisfiable, then Γ is unsatisfiable.

Proof. Assume that algorithm is-satisfiable-equality returns unsatisfiable.
By contradiction, assume that Γ is satisfiable. Then there exists a Σ-interpretation
A over vars(Γ) such that A |= Γ.

Let R′ be the binary relation of T defined by

(s, t) ∈ R′ ⇐⇒ sA = tA .

By construction, R′ is a congruence relation of T . Moreover, R ⊆ R′. Therefore,
it follows C ⊆ R′.

If the algorithm ended at line 6, then there exists a literal s 6≈ t in Γ such
that (s, t) ∈ C. But then (s, t) ∈ R′ which implies sA = tA, contradicting
A |= Γ.

If instead the algorithm ended at line 8, then there exist literals p(s1, . . . , sn)
and ¬p(t1, . . . , tn) such that (si, ti) ∈ C, for all i = 1, . . . , n. But then (si, ti) ∈
R′, for all i = 1, . . . , n. It follows that sA

i = tAi , for all i = 1, . . . , n, which
contradicts A |= Γ.

2.2.8 Proposition
Algorithm is-satisfiable-equality is correct.

Proof. Termination is obvious. Partial correctness follows by Propositions 2.2.6
and 2.2.7.

2.3 Nelson-Oppen

2.3.1 Algorithm (nelson-oppen-congruence-closure)
Input: A finite set T of terms and a binary relation R of T
Output: The congruence closure C of R with respect to T .

1: function nelson-oppen-congruence-closure(R, T)
2: C ← {(t, t) | t ∈ T }
3: for all (s, t) ∈ R do
4: merge(s, t)
5: end for
6: return C
7: end function

2.3. Nelson-Oppen 13

8: procedure merge(s, t)
9: if (s, t) /∈ C then

10: P ← preds(s)
11: Q← preds(t)
12: union(s, t)
13: for all (u, v) ∈ P ×Q do
14: if (u, v) /∈ C and congruent(u, v) then
15: merge(u, v)
16: end if
17: end for
18: end if
19: end procedure

20: procedure union(s, t)
21: C ← (C ∪ {(s, t), (t, s)})∗

22: end procedure

23: function preds(t)
24: return {u ∈ T | u ≡ f(. . . , t′, . . .) and (t, t′) ∈ C}
25: end function

26: function congruent(u, v)
27: if u ≡ f(s1, . . . , sn), v ≡ f(t1, . . . , tn), and (si, ti) ∈ C, for all i =

1, . . . , n then
28: return true

29: else
30: return false

31: end if
32: end function

2.3.2 Proposition
Algorithm nelson-oppen-congruence-closure terminates.

Proof. It suffices to prove that the number of calls to union is finite.
Note that C is initialized at line 2, and modified only by the procedure

union at line 21. Moreover, each call to union strictly increases the value of
|C|. Since this value cannot be greater than |T × T |, it follows that union can
be called only a finite number of times.

2.3.3 Proposition
In Algorithm nelson-oppen-congruence-closure, C is always an equiva-

lence relation of T .

Proof. Let
C0, C1, . . . , Ck, . . . , Cm ,

be the values taken by C during the execution of the algorithm.
Since C is initialized at line 2 and modified at line 21, we have:

14 Chapter 2. Equality

• C0 = {(t, t) | t ∈ T }.

• Cm is the value returned by the function nelson-oppen-congruence-
closure.

• For 0 ≤ k < n, Ck is the value of C just before the k-th call to the
procedure union, whereas Ck+1 is the value of C just after that call.

• For 0 ≤ k < n, we have

Ck+1 = (Ck ∪ {(s, t), (t, s)})
∗ , for some terms s, t ∈ T .

We want to show that Ck is an equivalence relation, for all k. We can do
this by induction on k.

For the base step, C0 is clearly an equivalence relation. For the induc-
tion step, suppose that Ck is an equivalence. Then clearly Ck+1 = (Ck ∪
{(s, t), (t, s)})∗ is also an equivalence relation.

2.3.4 Proposition
At the end of the execution of nelson-oppen-congruence-closure, we have

R ⊆ C.

Proof. Let

C0, C1, . . . , Ck, . . . , Cm ,

be the values taken by C during the execution of the algorithm. We want to
show that R ⊆ Cm.

Clearly, C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cm.

Next, assume that (s, t) ∈ R. Then we eventually call merge(s, t) at line 4.
At this point, if (s, t) ∈ Ck then (s, t) ∈ Cm. Otherwise, we eventually call
union(s, t) at line 12, which guarantees that (s, t) ∈ Cm.

2.3.5 Proposition
At the end of the execution of nelson-oppen-congruence-closure, C is a

congruence relation of T .

Proof. Let

C0, C1, . . . , Ck, . . . , Cm ,

be the values taken by C during the execution of the algorithm. We want to
show that Cm is a congruence relation of T .

By Proposition 2.3.3, Cm is an equivalence relation of T .
Next, assume that (si, ti) ∈ Cm, for i = 1, . . . , n, and that f(s1, . . . , sn),

f(t1, . . . , tn) ∈ T . Let s ≡ f(s1, . . . , sn) and t ≡ f(t1, . . . , tn).

If si ≡ ti, for i = 1, . . . , n then s ≡ t, which implies (s, t) ∈ C0 ⊆ Cm.
Otherwise, there exists an index k such that after the k-th call to union we have

2.3. Nelson-Oppen 15

(si, ti) ∈ Ck+1, for all i = 1, . . . , n, but before that call we have (sj , tj) /∈ Ck,
for some 1 ≤ j ≤ n. We have

Ck+1 = (Ck ∪ {(u, v), (v, u)})∗ , for some terms u, v ∈ T .

Moreover, without loss of generality we can assume that (u, sj) ∈ Ck and
(v, tj) ∈ Ck. But then, just before the call to union(u, v) at line 12, we have
f(s1, . . . , sn) ∈ preds(u) and f(t1, . . . , tn) ∈ preds(v). Moreover, after the call
to union(u, v) at line 12, we have that congruent(s, t) returns true. Thus, we
eventually call merge(s, t) at line 15, which guarantees that (s, t) ∈ Cn.

2.3.6 Proposition
Let R′ be any congruence relation of T such that R ⊆ R′. Then, at the end of

the execution of nelson-oppen-congruence-closure, we have C ⊆ R′.

Proof. Let
C0, C1, . . . , Ck, . . . , Cm ,

be the values taken by C during the execution of the algorithm.
We prove that Ck ⊆ R′, for all k. We proceed by induction on k. For the

base step, we clearly have C0 ⊆ R′.
For the induction step, let Ck+1 = (Ck ∪ {(s, t), (t, s)})

∗. Then we called
union(s, t) because either (s, t) ∈ R or congruent(s, t) returned true. We
prove that in both cases we must have Ck+1 ⊆ R′.

Assume first that (s, t) ∈ R, and let (u, v) ∈ Ck+1. If (u, v) ∈ Ck then by
the induction hypothesis (u, v) ∈ R′. Otherwise, without loss of generality, we
have (u, s) ∈ Ck and (v, t) ∈ Ck. By the induction hypothesis, it follows that
(u, s) ∈ R′ and (v, t) ∈ R′. Moreover, we have (s, t) ∈ R′ because R ⊆ R′. Since
R′ is an equivalence relation, we have (u, v) ∈ R′.

Finally, assume that congruent(s, t) returned true, and let (u, v) ∈ Ck+1.
If (u, v) ∈ Ck then by the induction hypothesis (u, v) ∈ R′. Otherwise, with-
out loss of generality, we have (u, s) ∈ Ck and (v, t) ∈ Ck. By induction
the induction hypothesis, it follows (u, s) ∈ R′ and (v, t) ∈ R′. Next, let
s ≡ f(s1, . . . , sn) and t ≡ f(t1, . . . , tn). Since congruent(s, t) returned true,
it follows that (si, ti) ∈ Ck, for all i = 1, . . . , n. By the induction hypothesis, we
have (si, ti) ∈ R′, for all i = 1, . . . , n. Since R′ is a congruence relation of T , it
follows that (s, t) ∈ R′. Since R′ is an equivalence relation, we have (u, v) ∈ R′.

2.3.7 Proposition
Algorithm nelson-oppen-congruence-closure is correct.

Proof. Termination follows by Proposition 2.3.2. Partial correctness follows
by Propositions 2.3.4, 2.3.5, and 2.3.6.

16 Chapter 2. Equality

