Chapter 3

Reals

DECISION PROCEDURES

Last update of lecture notes: Tuesday, March 7, 2006 Last update of this chapter: Wednesday, February 1, 2006

3.1 The modelclass

3.1.1 Definition

The SIGNATURE OF REALS Σ_{real} contains the following symbols:

- The sort real for real numbers.
- A constant symbol c_r of sort real, for all rational numbers $r \in \mathbb{Q}$.
- The binary infix predicate symbol + (addition), of arity real \times real \rightarrow real.
- The unary function symbol (unary minus), of arity real \rightarrow real.
- The binary function symbol \times (multiplication), of arity real \times real \rightarrow real.
- The binary infix predicate symbol < (strict ordering), of arity real \times real.
- The binary infix predicate symbol \leq (weak ordering), of arity real \times real.

3.1.2 Definition

The STANDARD real-STRUCTURE is the unique Σ_{real} -structure A satisfying the following properties:

- 1. $A_{\mathsf{real}} = \mathbb{R}$.
- 2. $c_r^{\mathcal{A}} = r$, for all rational numbers $r \in \mathbb{Q}$.
- 3. The symbols $+,-,\times,<$, and \leq are interpreted according to their standard interpretation over \mathbb{R} .

18 Chapter 3. Reals

3.1.3 Definition

The MODELCLASS OF REALS is the pair $M_{\text{real}} = (\Sigma_{\text{real}}, \mathbf{A})$, where \mathbf{A} is the class of all Σ_{real} -structures that are isomorphic to the standard real-structure.

3.1.4 Notation

When writing Σ_{real} -terms, we follow the following conventions:

- For every rational number $r \in \mathbb{Q}$, the constant c_r is written directly as r.
- The term s-t is a shorthand for s+(-t).
- The term st is a shorthand for $s \times t$.
- Since the addition and multiplication of real numbers are associative, we drop the parenthesis when writing Σ_{real} -terms like s + t + u or stu.

3.1.5 Definition

The set of LINEAR Σ_{real} -terms is the smallest set of Σ_{real} -terms satisfying the following properties.

- 1. Every variable or constant symbol of sort real is a linear Σ_{real} -term.
- 2. If s and t are linear Σ_{real} -terms then s+t is a linear Σ_{real} -term.
- 3. If c is a constant symbol of sort real and t is a linear Σ_{real} -term then ct and tc are linear Σ_{real} -terms.

3.1.6 Definition

A quantifier-free Σ_{real} -formula is LINEAR if all terms occurring in it are linear.

3.1.7 Proposition

For every conjunction Γ of linear Σ_{real} -literals, and for every disjunction of the form $\bigvee_{i=1}^{n} s_i \approx t_i$, where the s_i, t_i are linear Σ_{real} -terms, we have

$$\Gamma o \bigvee_{i=1}^n s_i \approx t_i \ is \ M_{\mathsf{real}}\text{-}valid \quad \Longleftrightarrow \quad \Gamma o s_j \approx t_j \ is \ M_{\mathsf{real}}\text{-}valid, \ for \ some \ j$$
 .

3.2 Gaussian elimination

3.2.1 Algorithm (IS-SATISFIABLE-GAUSS)

Input: A finite set Γ of linear Σ_{real} -literals of the form $s \approx t$ and $s \not\approx t$ Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

- 1: **function** IS-SATISFIABLE-GAUSS (Γ)
- 2: while true do
- 3: Simplify Γ , so that all literals in it become of the form

$$a_1x_1 + \cdots + a_nx_n + b \approx 0$$
, $a_1x_1 + \cdots + a_nx_n + b \not\approx 0$,

where $n \geq 0$, the a_i are nonzero constant symbols, the x_i are variables, and b is a constant symbol

```
while \Gamma contains a ground literal \ell do
 4:
                     if (\ell \equiv b \approx 0 \text{ and } b \neq 0) or (\ell \equiv b \not\approx 0 \text{ and } b = 0) then
 5:
                          return unsatisfiable
 6:
 7:
                          \Gamma \leftarrow \Gamma \setminus \{\ell\}
 8:
 9:
                     end if
                end while
10:
                if all literals in \Gamma are of the form a_1x_1 + \cdots + a_nx_n + b \not\approx 0 then
11:
12:
                     return satisfiable
                end if
13:
                Let \Gamma = \Delta \cup \{a_1x_1 + \ldots + a_nx_n \approx 0\}, and construct the substitution
14:
                                      \sigma = \left\{ x_1 / -\frac{a_2}{a_1} x_2 - \dots - \frac{a_n}{a_1} x_n - \frac{b}{a_1} \right\}
                \Gamma \leftarrow \Delta \sigma
15:
          end while
16:
17: end function
```

3.2.2 Proposition

Algorithm is-satisfiable-gauss is terminating.

PROOF. Notice that, for every iteration of the **while** loop at line 2, either the algorithm ends at line 6 or 12, or the value of $|vars(\Gamma)|$ strictly decreases because the assignment at line 15 removes the variable x_1 . It follows that the number of iterations of the **while** loop at line 2 is finite, which implies termination of the algorithm.

3.2.3 Proposition

In Algorithm IS-SATISFIABLE-GAUSS, every modification of Γ preserves M_{real} -satisfiability.

PROOF. Γ is modified at lines 3, 8, and 15. The modification at line 3 clearly preserves M_{real} -equivalence, and therefore it also preserves M_{real} -satisfiability.

Concerning the modification at line 8, we have that the literal ℓ is M_{real} -equivalent to true, implying that this modification also preserves M_{real} -equivalence, and therefore it also preserves M_{real} -satisfiability.

Concerning the modification at line 16, let

$$\Gamma = \Delta \cup \{a_1x_1 + \cdots + a_nx_n + b \approx 0\},\,$$

and let

$$\Gamma' = \Delta \sigma$$

where

$$\sigma = \left\{ x_1 / -\frac{a_2}{a_1} x_2 - \dots - \frac{a_n}{a_1} x_n - \frac{b}{a_1} \right\}$$

We want to show that Γ and Γ' are M_{real} -equisatisfiable.

Clearly, if Γ is M_{real} -satisfiable then Γ' is M_{real} -satisfiable. Viceversa, assume that Γ' is M_{real} -satisfiable, and let \mathcal{A} be a M_{real} -interpretation over $vars(\Gamma')$ such that $\mathcal{A} \models \Gamma'$. Let \mathcal{B} be the M_{real} -interpretation over $vars(\Gamma) = vars(\Gamma') \cup \{x_1\}$ that is defined as being exactly as \mathcal{A} , except that

$$x_1^{\mathcal{B}} = \left[-\frac{a_2}{a_1} x_2 - \dots - \frac{a_n}{a_1} x_n - \frac{b}{a_1} \right]^{\mathcal{A}}.$$

By construction, $\mathfrak{B} \models \Gamma$.

3.2.4 Proposition

Algorithm is-satisfiable-gauss is partially correct.

PROOF. Let Γ_0 be the value of Γ at the beginning of the algorithm, and let Γ_1 be the value of Γ at the end of the algorithm.

Assume that the algorithm ends at line 6 returning unsatisfiable. Then, Γ_1 contains a literal ℓ that is M_{real} -unsatisfiable. Thus, Γ_1 is unsatisfiable. By Proposition 3.2.3, Γ_0 is unsatisfiable.

If instead the algorithm ends at line 12, returning satisfiable, then Γ_1 is a finite set of literals of the form

$$a_1x_1 + \cdots + a_nx_n + b \not\approx 0$$
,

where n > 0. Since all these literals are M_{real} -satisfiable, by Proposition 3.1.7, it follows that Γ_1 is M_{real} -satisfiable. Therefore, by Proposition 3.2.3, Γ_0 is satisfiable.

3.2.5 Proposition

Algorithm is-satisfiable-gauss is correct.

PROOF. By Propositions 3.2.2 and 3.2.4.

3.3 Fourier-Motzkin

3.3.1 Algorithm (IS-SATISFIABLE-FOURIER-MOTZKIN)

Input: A finite set Γ of linear Σ_{real} -literals of the form $s \leq t$ and s < t Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

- 1: **function** IS-SATISFIABLE-FOURIER-MOTZKIN(Γ)
- 2: while true do
- 3: Simplify Γ , so that all literals in it become of the form

$$a_1x_1 + \cdots + a_nx_n + b \le 0$$
, $a_1x_1 + \cdots + a_nx_n + b < 0$,

where $n \geq 0$, the a_i are nonzero constant symbols, the x_i are variables, and b is a constant symbol

- 4: while Γ contains a ground literal ℓ do
- 5: if $(\ell \equiv b \leq 0 \text{ and } b > 0)$ or $(\ell \equiv b < 0 \text{ and } b \geq 0)$ then

```
return unsatisfiable
 6:
 7:
                    else
                         \Gamma \leftarrow \Gamma \setminus \{\ell\}
                    end if
 9:
               end while
10:
11:
               if \Gamma = \emptyset then
12:
                    return satisfiable
               end if
13:
               Pick a variable x \in vars(\Gamma), and rewrite \Gamma so that we have
                         \Gamma = \Delta \cup \{s_i \le x\}_i \cup \{s_i' < x\}_i \cup \{x \le t_k\}_k \cup \{x < t_h'\}_h
               where \Delta does not contain x.
               \Gamma \leftarrow \Delta \cup \{s_i \leq t_k\}_{i,k} \cup \{s_i < t_h'\}_{i,h} \cup \{s_j' < t_k\}_{j,k} \cup \{s_j' < t_h'\}_{j,h}
15:
16:
          end while
17: end function
```

3.3.2 Proposition

Algorithm IS-SATISFIABLE-FOURIER-MOTZKIN is terminating.

PROOF. Notice that, for every iteration of the **while** loop at line 2, either the algorithm ends at line 6 or 12, or the value of $|vars(\Gamma)|$ strictly decreases because the assignment at line 15 removes the variable x. It follows that the number of iterations of the **while** loop at line 2 is finite, which implies termination of the algorithm.

3.3.3 Proposition

In Algorithm is-satisfiable-fourier-motzkin, every modification of Γ preserves M_{real} -satisfiability.

PROOF. Γ is modified at lines 3, 8, 14, and 15. The modifications at lines 3 and 14 clearly preserve M_{real} -equivalence, and therefore they also preserve M_{real} -satisfiability.

Concerning the modification at line 8, we have that the literal ℓ is M_{real} -equivalent to true, implying that this modification also preserves M_{real} -equivalence, and therefore it also preserves M_{real} -satisfiability.

Concerning the modification at line 15, let

$$\Gamma = \Delta \cup \{s_i \le x\}_i \cup \{s_j' < x\}_j \cup \{x \le t_k\}_k \cup \{x < t_h'\}_h,$$

and let

$$\Gamma' = \Delta \cup \{s_i \leq t_k\}_{i,k} \cup \{s_i < t_h'\}_{i,h} \cup \{s_j' < t_k\}_{j,k} \cup \{s_j' < t_h'\}_{j,h} \,.$$

We want to show that Γ and Γ' are M_{real} -equisatisfiable.

Clearly, if Γ is M_{real} -satisfiable then Γ' is M_{real} -satisfiable. Viceversa, assume that Γ' is M_{real} -satisfiable, and let \mathcal{A} be a M_{real} -interpretation over $vars(\Gamma')$ such

22

that $\mathcal{A} \models \Gamma'$. Let \mathcal{B} be the M_{real} -interpretation over $vars(\Gamma) = vars(\Gamma') \cup \{x\}$ that is defined as being exactly as \mathcal{A} , except that

$$x^{\mathcal{B}} = \frac{\min(\{(t_k)^{\mathcal{A}}\}_k \cup \{(t_h')^{\mathcal{A}}\}_h) - \max(\{(s_i)^{\mathcal{A}}\}_i \cup \{(s_j')^{\mathcal{A}}\}_j)}{2}.$$

By construction, $\mathfrak{B} \models \Gamma$.

3.3.4 Proposition

Algorithm is-satisfiable-fourier-motzkin is partially correct.

PROOF. Let Γ_0 be the value of Γ at the beginning of the algorithm, and let Γ_1 be the value of Γ at the end of the algorithm.

Assume that the algorithm ends at line 6 returning unsatisfiable. Then, Γ_1 contains a literal ℓ that is M_{real} -unsatisfiable. Thus, Γ_1 is unsatisfiable. By Proposition 3.3.3, Γ_0 is unsatisfiable.

If instead the algorithm ends at line 15, returning satisfiable, then $\Gamma_1=\varnothing$. Thus, Γ_1 is M_{real} -satisfiable. By Proposition 3.3.3, Γ_0 is M_{real} -satisfiable.

3.3.5 Proposition

Algorithm is-satisfiable-fourier-motzkin is correct.

PROOF. By Propositions 3.3.2 and 3.3.4.