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3.1 The modelclass

3.1.1 Definition
The signature of reals Σreal contains the following symbols:

• The sort real for real numbers.

• A constant symbol cr of sort real, for all rational numbers r ∈ Q.

• The binary infix predicate symbol + (addition), of arity real× real→ real.

• The unary function symbol − (unary minus), of arity real→ real.

• The binary function symbol × (multiplication), of arity real× real→ real.

• The binary infix predicate symbol < (strict ordering), of arity real× real.

• The binary infix predicate symbol ≤ (weak ordering), of arity real× real.

3.1.2 Definition
The standard real-structure is the unique Σreal-structure A satisfying the
following properties:

1. Areal = R.

2. cA
r = r, for all rational numbers r ∈ Q.

3. The symbols +, −, ×, <, and≤ are interpreted according to their standard
interpretation over R.
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3.1.3 Definition
The modelclass of reals is the pair Mreal = (Σreal,A), where A is the class
of all Σreal-structures that are isomorphic to the standard real-structure.

3.1.4 Notation
When writing Σreal-terms, we follow the following conventions:

• For every rational number r ∈ Q, the constant cr is written directly as r.

• The term s− t is a shorthand for s + (−t).

• The term st is a shorthand for s× t.

• Since the addition and multiplication of real numbers are associative, we
drop the parenthesis when writing Σreal-terms like s + t + u or stu.

3.1.5 Definition
The set of linear Σreal-terms is the smallest set of Σreal-terms satisfying the
following properties.

1. Every variable or constant symbol of sort real is a linear Σreal-term.

2. If s and t are linear Σreal-terms then s + t is a linear Σreal-term.

3. If c is a constant symbol of sort real and t is a linear Σreal-term then ct
and tc are linear Σreal-terms.

3.1.6 Definition
A quantifier-free Σreal-formula is linear if all terms occurring in it are linear.

3.1.7 Proposition
For every conjunction Γ of linear Σreal-literals, and for every disjunction of the

form
∨n

i=1
si ≈ ti, where the si, ti are linear Σreal-terms, we have

Γ→

n
∨

i=1

si ≈ ti is Mreal-valid ⇐⇒ Γ→ sj ≈ tj is Mreal-valid, for some j .

3.2 Gaussian elimination

3.2.1 Algorithm (is-satisfiable-gauss)
Input: A finite set Γ of linear Σreal-literals of the form s ≈ t and s 6≈ t
Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

1: function is-satisfiable-gauss(Γ)
2: while true do
3: Simplify Γ, so that all literals in it become of the form

a1x1 + · · ·+ anxn + b ≈ 0 , a1x1 + · · ·+ anxn + b 6≈ 0 ,

where n ≥ 0, the ai are nonzero constant symbols, the xi are variables,
and b is a constant symbol
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4: while Γ contains a ground literal ` do
5: if (` ≡ b ≈ 0 and b 6= 0) or (` ≡ b 6≈ 0 and b = 0) then
6: return unsatisfiable

7: else
8: Γ← Γ \ {`}
9: end if

10: end while
11: if all literals in Γ are of the form a1x1 + · · ·+ anxn + b 6≈ 0 then
12: return satisfiable

13: end if
14: Let Γ = ∆∪ {a1x1 + . . . + anxn ≈ 0}, and construct the substitution

σ =

{

x1/−
a2

a1

x2 − . . .−
an

a1

xn −
b

a1

}

15: Γ← ∆σ
16: end while
17: end function

3.2.2 Proposition
Algorithm is-satisfiable-gauss is terminating.

Proof. Notice that, for every iteration of the while loop at line 2, either the
algorithm ends at line 6 or 12, or the value of |vars(Γ)| strictly decreases because
the assignment at line 15 removes the variable x1. It follows that the number
of iterations of the while loop at line 2 is finite, which implies termination of
the algorithm.

3.2.3 Proposition
In Algorithm is-satisfiable-gauss, every modification of Γ preserves Mreal-

satisfiability.

Proof. Γ is modified at lines 3, 8, and 15. The modification at line 3 clearly
preserves Mreal-equivalence, and therefore it also preserves Mreal-satisfiability.

Concerning the modification at line 8, we have that the literal ` is Mreal-
equivalent to true, implying that this modification also preserves Mreal-equivalence,
and therefore it also preserves Mreal-satisfiability.

Concerning the modification at line 16, let

Γ = ∆ ∪ {a1x1 + · · · anxn + b ≈ 0} ,

and let
Γ′ = ∆σ

where

σ =

{

x1/−
a2

a1

x2 − . . .−
an

a1

xn −
b

a1

}

We want to show that Γ and Γ′ are Mreal-equisatisfiable.
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Clearly, if Γ is Mreal-satisfiable then Γ′ is Mreal-satisfiable. Viceversa, assume
that Γ′ is Mreal-satisfiable, and let A be a Mreal-interpretation over vars(Γ′) such
that A |= Γ′. Let B be the Mreal-interpreation over vars(Γ) = vars(Γ′) ∪ {x1}
that is defined as being exactly as A, except that

xB

1
=

[

−
a2

a1

x2 − . . .−
an

a1

xn −
b

a1

]A

.

By construction, B |= Γ.

3.2.4 Proposition
Algorithm is-satisfiable-gauss is partially correct.

Proof. Let Γ0 be the value of Γ at the beginning of the algorithm, and let Γ1

be the value of Γ at the end of the algorithm.
Assume that the algorithm ends at line 6 returning unsatisfiable. Then,

Γ1 contains a literal ` that is Mreal-unsatisfiable. Thus, Γ1 is unsatisfiable. By
Proposition 3.2.3, Γ0 is unsatisfiable.

If instead the algorithm ends at line 12, returning satisfiable, then Γ1 is
a finite set of literals of the form

a1x1 + · · · anxn + b 6≈ 0 ,

where n > 0. Since all these literals are Mreal-satisfiable, by Proposition 3.1.7,
it follows that Γ1 is Mreal-satisfiable. Therefore, by Proposition 3.2.3, Γ0 is
satisfiable.

3.2.5 Proposition
Algorithm is-satisfiable-gauss is correct.

Proof. By Propositions 3.2.2 and 3.2.4.

3.3 Fourier-Motzkin

3.3.1 Algorithm (is-satisfiable-fourier-motzkin)
Input: A finite set Γ of linear Σreal-literals of the form s ≤ t and s < t
Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

1: function is-satisfiable-fourier-motzkin(Γ)
2: while true do
3: Simplify Γ, so that all literals in it become of the form

a1x1 + · · ·+ anxn + b ≤ 0 , a1x1 + · · ·+ anxn + b < 0 ,

where n ≥ 0, the ai are nonzero constant symbols, the xi are variables,
and b is a constant symbol

4: while Γ contains a ground literal ` do
5: if (` ≡ b ≤ 0 and b > 0) or (` ≡ b < 0 and b ≥ 0) then
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6: return unsatisfiable

7: else
8: Γ← Γ \ {`}
9: end if

10: end while
11: if Γ = ∅ then
12: return satisfiable

13: end if
14: Pick a variable x ∈ vars(Γ), and rewrite Γ so that we have

Γ = ∆ ∪ {si ≤ x}i ∪ {s
′

j < x}j ∪ {x ≤ tk}k ∪ {x < t′h}h

where ∆ does not contain x.
15: Γ← ∆ ∪ {si ≤ tk}i,k ∪ {si < t′h}i,h ∪ {s

′

j < tk}j,k ∪ {s
′

j < t′h}j,h
16: end while
17: end function

3.3.2 Proposition
Algorithm is-satisfiable-fourier-motzkin is terminating.

Proof. Notice that, for every iteration of the while loop at line 2, either the
algorithm ends at line 6 or 12, or the value of |vars(Γ)| strictly decreases because
the assignment at line 15 removes the variable x. It follows that the number of
iterations of the while loop at line 2 is finite, which implies termination of the
algorithm.

3.3.3 Proposition
In Algorithm is-satisfiable-fourier-motzkin, every modification of Γ pre-

serves Mreal-satisfiability.

Proof. Γ is modified at lines 3, 8, 14, and 15. The modifications at lines 3
and 14 clearly preserve Mreal-equivalence, and therefore they also preserve Mreal-
satisfiability.

Concerning the modification at line 8, we have that the literal ` is Mreal-
equivalent to true, implying that this modification also preserves Mreal-equivalence,
and therefore it also preserves Mreal-satisfiability.

Concerning the modification at line 15, let

Γ = ∆ ∪ {si ≤ x}i ∪ {s
′

j < x}j ∪ {x ≤ tk}k ∪ {x < t′h}h ,

and let

Γ′ = ∆ ∪ {si ≤ tk}i,k ∪ {si < t′h}i,h ∪ {s
′

j < tk}j,k ∪ {s
′

j < t′h}j,h .

We want to show that Γ and Γ′ are Mreal-equisatisfiable.
Clearly, if Γ is Mreal-satisfiable then Γ′ is Mreal-satisfiable. Viceversa, assume

that Γ′ is Mreal-satisfiable, and let A be a Mreal-interpretation over vars(Γ′) such
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that A |= Γ′. Let B be the Mreal-interpretation over vars(Γ) = vars(Γ′) ∪ {x}
that is defined as being exactly as A, except that

xB =
min

({

(tk)A
}

k
∪

{

(t′h)A
}

h

)

−max
(

{

(si)
A

}

i
∪

{

(s′j)
A

}

j

)

2
.

By construction, B |= Γ.

3.3.4 Proposition
Algorithm is-satisfiable-fourier-motzkin is partially correct.

Proof. Let Γ0 be the value of Γ at the beginning of the algorithm, and let Γ1

be the value of Γ at the end of the algorithm.
Assume that the algorithm ends at line 6 returning unsatisfiable. Then,

Γ1 contains a literal ` that is Mreal-unsatisfiable. Thus, Γ1 is unsatisfiable. By
Proposition 3.3.3, Γ0 is unsatisfiable.

If instead the algorithm ends at line 15, returning satisfiable, then Γ1 =
∅. Thus, Γ1 is Mreal-satisfiable. By Proposition 3.3.3, Γ0 is Mreal-satisfiable.

3.3.5 Proposition
Algorithm is-satisfiable-fourier-motzkin is correct.

Proof. By Propositions 3.3.2 and 3.3.4.


