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3.1 The modelclass

3.1.1 Definition
The SIGNATURE OF REALS Y,ea contains the following symbols:

e The sort real for real numbers.

A constant symbol ¢, of sort real, for all rational numbers r € Q.

The binary infix predicate symbol + (addition), of arity real x real — real.

The unary function symbol — (unary minus), of arity real — real.

e The binary function symbol x (multiplication), of arity real x real — real.
e The binary infix predicate symbol < (strict ordering), of arity real x real.
e The binary infix predicate symbol < (weak ordering), of arity real x real.

3.1.2 Definition
The STANDARD real-STRUCTURE is the unique X,ey-structure A satisfying the
following properties:

1. Areal = R.

2. ¢! =r, for all rational numbers r € Q.

- =

3. The symbols 4+, —, X, <, and < are interpreted according to their standard
interpretation over R.
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Definition
The MODELCLASS OF REALS is the pair Mes = (Zreal, A), where A is the class
of all Xe-structures that are isomorphic to the standard real-structure.

Notation
When writing Y., -terms, we follow the following conventions:

e For every rational number r € Q, the constant ¢, is written directly as r.
e The term s — ¢ is a shorthand for s + (—t).
e The term st is a shorthand for s x t.

e Since the addition and multiplication of real numbers are associative, we
drop the parenthesis when writing Ye-terms like s + t 4+ u or stu.

Definition
The set of LINEAR X,e-terms is the smallest set of Y. -terms satisfying the
following properties.

1. Every variable or constant symbol of sort real is a linear ¥ ey -term.
2. If s and t are linear Y,y -terms then s + ¢ is a linear X,y -term.

3. If ¢ is a constant symbol of sort real and t is a linear X ey-term then ct
and tc are linear Y,e;-terms.

Definition
A quantifier-free Y,e,-formula is LINEAR if all terms occurring in it are linear.

Proposition
For every conjunction T’ of linear ¥iea-literals, and for every disjunction of the
form \/?:1 s; = t;, where the s;,t; are linear ¥iea-terms, we have

n
I'— \/ s; = t; 18 Mreai-valid = T — s; =t; is Mea-valid, for some j.

i=1

3.2 Gaussian elimination

Algorithm (IS-SATISFIABLE-GAUSS)
Input: A finite set I' of linear X,e,-literals of the form s ~ t and s % ¢
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function I1S-SATISFIABLE-GAUSS(I")
2: while true do
3: Simplify I', so that all literals in it become of the form

a1x1+ -+ apx, +b=0, a1y + -+ anT, +b%0),

where n > 0, the a; are nonzero constant symbols, the z; are variables,
and b is a constant symbol
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4: while I' contains a ground literal ¢ do

5: if(l=bx~0andb#0)or ({=b%0andb=0) then

6: return unsatisfiable

7 else

8: I'—T \ {6}

9: end if

10: end while

11: if all literals in I" are of the form a1x1 + -+ - + anxn + b % 0 then

12: return satisfiable

13: end if

14: Let ' = AU {a1z1 + ...+ anx, = 0}, and construct the substitution
as an b

cr—{xl/——:zrg— - —=x ——}

a1 a1 a1

15: I' — Ao

16: end while

17: end function

Proposition
Algorithm 1S-SATISFIABLE-GAUSS is terminating.

PROOF. Notice that, for every iteration of the while loop at line 2, either the
algorithm ends at line 6 or 12, or the value of |vars(T')| strictly decreases because
the assignment at line 15 removes the variable x1. It follows that the number
of iterations of the while loop at line 2 is finite, which implies termination of
the algorithm.

Proposition
In Algorithm 1S-SATISFIABLE-GAUSS, every modification of I' preserves Myeal-
satisfiability.

PRrOOF. T is modified at lines 3, 8, and 15. The modification at line 3 clearly
preserves M, -equivalence, and therefore it also preserves M ey -satisfiability.
Concerning the modification at line 8, we have that the literal ¢ is Mea-
equivalent to true, implying that this modification also preserves M., -equivalence,
and therefore it also preserves M., -satisfiability.
Concerning the modification at line 16, let

r=AU{aiz1+ - anx, +b=0},

and let
"= Ao

_ as an b
o= :vl/—a—:vg—...——acn——
1

ai ai

where

We want to show that I' and I are M,e,-equisatisfiable.
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Clearly, if T" is M e, -satisfiable then IV is M, -satisfiable. Viceversa, assume
that I is Mea-satisfiable, and let A be a Mes-interpretation over vars(I") such
that A = T’. Let B be the M -interpreation over vars(T") = vars(I”) U {z1}
that is defined as being exactly as A, except that

By construction, B =T

Proposition
Algorithm 1S-SATISFIABLE-GAUSS is partially correct.

PRrROOF. Let I'y be the value of I" at the beginning of the algorithm, and let I"y
be the value of I" at the end of the algorithm.

Assume that the algorithm ends at line 6 returning unsatisfiable. Then,
I’y contains a literal ¢ that is Mea-unsatisfiable. Thus, I'; is unsatisfiable. By
Proposition 3.2.3, 'y is unsatisfiable.

If instead the algorithm ends at line 12, returning satisfiable, then I'; is
a finite set of literals of the form

a1+ rapxy +0 %0,

where n > 0. Since all these literals are M,y -satisfiable, by Proposition 3.1.7,
it follows that I'y is Mea-satisfiable. Therefore, by Proposition 3.2.3, I'g is
satisfiable.

Proposition
Algorithm 1S-SATISFIABLE-GAUSS is correct.

Proor. By Propositions 3.2.2 and 3.2.4.

3.3 Fourier-Motzkin

Algorithm (1S-SATISFIABLE-FOURIER-MOTZKIN)
Input: A finite set I' of linear X,e,-literals of the form s <t and s < t
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function IS-SATISFIABLE-FOURIER-MOTZKIN(T")

2: while true do
3: Simplify T', so that all literals in it become of the form
a1+ -+ apr, +0 <0, a1+ -+ apxy, +b <0,

where n > 0, the a; are nonzero constant symbols, the x; are variables,
and b is a constant symbol

4: while I' contains a ground literal ¢ do
5: if {=b<0andb>0)or ({=b<0andb>0)then
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6: return unsatisfiable

7 else

8: I —T\{¢

9: end if

10: end while

11: if ' = & then

12: return satisfiable

13: end if

14: Pick a variable z € vars(T"), and rewrite I' so that we have

P=AU{si <z} U{s) <a}jU{z <t} U{z <ty}n

where A does not contain .

15: F—AU{s; < tk}i,k U{s; < t%}i,h U {S; < tk}j,k U {83 < t%}j_’h

16: end while

17: end function

3.3.2 Proposition
Algorithm 1S-SATISFIABLE-FOURIER-MOTZKIN is terminating.

PROOF. Notice that, for every iteration of the while loop at line 2, either the
algorithm ends at line 6 or 12, or the value of |vars(T')| strictly decreases because
the assignment at line 15 removes the variable x. It follows that the number of
iterations of the while loop at line 2 is finite, which implies termination of the
algorithm.

3.3.3 Proposition
In Algorithm 1S-SATISFIABLE-FOURIER-MOTZKIN, every modification of T’ pre-
serves Mea-satisfiability.

PRrROOF. T is modified at lines 3, 8, 14, and 15. The modifications at lines 3
and 14 clearly preserve M., -equivalence, and therefore they also preserve Mea-
satisfiability.

Concerning the modification at line 8, we have that the literal ¢ is Mea-
equivalent to true, implying that this modification also preserves M, -equivalence,
and therefore it also preserves M., -satisfiability.

Concerning the modification at line 15, let

P=AU{si <z} U{s) <z} U{z <tp}rU{z <ty}n,
and let
MM=AU{s; <tp}irU{si <tp}inU {33 <tp}jrU {33 <th}ih-
We want to show that I' and I are M, -equisatisfiable.

Clearly, if T" is Me,-satisfiable then IV is M, -satisfiable. Viceversa, assume
that TV is M,ea-satisfiable, and let A be a M,eq-interpretation over vars(I') such
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that A = T”. Let B be the Mea-interpretation over vars(T') = vars(I'") U {z}
that is defined as being exactly as A, except that

o min ({(tx)*}, U {(tp)*},) —max({(si)ﬂ}i U {(s;-)“q}j)

2

By construction, B T

Proposition
Algorithm 1S-SATISFIABLE-FOURIER-MOTZKIN s partially correct.

PROOF. Let I'g be the value of ' at the beginning of the algorithm, and let I'y
be the value of I at the end of the algorithm.

Assume that the algorithm ends at line 6 returning unsatisfiable. Then,
I’y contains a literal ¢ that is Mey-unsatisfiable. Thus, I'; is unsatisfiable. By
Proposition 3.3.3, 'y is unsatisfiable.

If instead the algorithm ends at line 15, returning satisfiable, then I'; =
@. Thus, I'1 is M,ea-satisfiable. By Proposition 3.3.3, Iy is M, -satisfiable.

Proposition
Algorithm 1S-SATISFIABLE-FOURIER-MOTZKIN is correct.

Proor. By Propositions 3.3.2 and 3.3.4.



