Chapter 4

Integers

Decision Procedures
Last update of lecture notes: Tuesday, March 7, 2006
Last update of this chapter: Monday, February 27, 2006.

4.1 The modelclass

4.1.1 Definition

The signature of integers $\Sigma_{\text {int }}$ contains the following symbols:

- The sort int for integer numbers.
- A constant symbol c_{m} of sort int, for all integer numbers $m \in \mathbb{Z}$.
- The binary infix predicate symbol $+($ addition $)$, of arity real \times real \rightarrow real.
- The unary function symbol - (unary minus), of arity real \rightarrow real.
- For each integer $k \in \mathbb{Z}$, a unary function symbol $k \times \bullet$ (scalar multiplication), of arity real \rightarrow real.
- For each positive integer $k \in \mathbb{Z}^{+}$, a unary predicate symbol $k \mid \bullet($ divisibility), of arity real.
- The binary infix predicate symbol $<$ (strict ordering $)$, of arity real \times real.

4.1.2 Definition

The standard int-structure is the unique $\Sigma_{\text {int }}$-structure \mathcal{A} satisfying the following properties:

1. $A_{\text {int }}=\mathbb{Z}$.
2. $c_{m}^{\mathcal{A}}=m$, for all integer numbers $m \in \mathbb{Z}$.
3. The symbols,,$+- \times, \mid$, and $<$ are interpreted according to their standard interpretation over \mathbb{Z}.

4.1.3 Definition

The modelclass of integers is the pair $M_{\mathrm{int}}=\left(\Sigma_{\mathrm{int}}, \mathbf{A}\right)$, where \mathbf{A} is the class of all Σ_{int}-structures that are isomorphic to the standard int-structure.

4.2 Cooper

4.2.1 Algorithm (ELIMINATE-VARIABLE-COOPER)

Input: A quantifier-free $\Sigma_{\text {int }}$-formula $F(x)$
Output: A quantifier-free Σ_{int}-formula $F^{-\infty}$ that is M_{int}-equivalent to $\left(\exists_{\mathrm{int}} x\right) F(x)$, and such that $\operatorname{vars}\left(F^{-\infty}\right)=\operatorname{vars}(F(x)) \backslash\{x\}$
function ELIMINATE-VARIABLE-COOPER $(F(x))$
Convert $F(x)$ in positive normal form.
Replace each literal in $F(x)$ of the form

$$
s=t, \quad \neg(s=t), \quad \neg(s<t)
$$

with $M_{\text {int }}$-equivalent formulae involving only $<$. This can be done by means of the following rewrite rules

$$
\begin{array}{lll}
s=t & \Longrightarrow & s<t+1 \wedge t<s+1, \\
\neg(s=t) & \Longrightarrow & s<t \vee t<s, \\
\neg(s<t) & \Longrightarrow & t<s+1 .
\end{array}
$$

At the end of this instruction, all literals in $F(x)$ will be of the form

$$
s<t, \quad k \mid t, \quad \neg(k \mid t)
$$

By opportunely collecting all terms involving x, rewrite $F(x)$ so that each literal in it either does not contain x, or is of the form

$$
k x<t, \quad t<k x, \quad k \mid h x+t, \quad \neg(k \mid h x+t)
$$

where t does not involve x.
$5:$ Let δ^{\prime} be the least common multiple of the coefficients of x in $F(x)$. Multiply all atoms in $F(x)$ by opportune constants, so that δ^{\prime} becomes the coefficient of all occurrences of x. Finally, replace $\left(\exists_{\text {int }} x\right) F\left(\delta^{\prime} x\right)$ with $\left(\exists_{\text {int }} x\right)\left(F(x) \wedge \delta^{\prime} \mid x\right)$.
The result is a formula in positive normal form whose literals involving x are of the form
(A) $x<a_{i}$,
(B) $b_{i}<x$,
(C) $h_{i} \mid x+c_{i}$,
(D) $\neg\left(k_{i} \mid x+d_{i}\right)$
where the a_{i}, b_{i}, c_{i}, and d_{i} are terms not involving x.

6: \quad Let δ be the least common multiple of all the h_{i} and k_{i}. Denote with $F_{-\infty}(x)$ the formula obtained from $F(x)$ by replacing all literals of the form (A) with true, and all literals of the form (B) with false. Return the formula

$$
F^{-\infty}: \bigvee_{j=1}^{\delta} F_{-\infty}(j) \vee \bigvee_{j=1}^{\delta} \bigvee_{b_{i}} F\left(b_{i}+j\right)
$$

7: end function

4.2.2 Proposition

Let F be a quantifier-free formula in positive normal form, and let \mathcal{A}, \mathcal{B} be interpretations such that $F^{\mathcal{A}}=$ true and $F^{\mathcal{B}}=$ false. Then there exists a literal ℓ in F such that $\ell^{\mathcal{A}}=$ true and $\ell^{\mathcal{B}}=$ false.

Proof. By structural induction on F.

4.2.3 Proposition

In Algorithm eliminate-variable-Cooper, let $F(x)$ be the formula obtained at the end of line 5. Let \mathcal{A} be any M_{int}-interpretation. Then there exists an integer ν such that

$$
[F(x)]^{\mathcal{A} \circ\{x / n\}}=\left[F_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n\}}, \quad \text { for all } n<\nu
$$

Proof. We proceed by structural induction on $F(x)$.
For the base case, if $F(x)$ is a literal of the form $a_{i}<x$ then $F_{-\infty}(x)$ is false, and it suffices to take $\nu=s^{\mathcal{A}}$. If instead $F(x)$ is a literal of the form $x<b_{i}$ then $F_{-\infty}(x)$ is true, and it suffices to take $\nu=t^{\mathcal{A}}$. Finally, if $F(x)$ is a literal not containing x, or a literal of the form $h_{i} \mid x+c_{i}$ or $\neg\left(k_{i} \mid x+d_{i}\right)$, then $F(x)$ and $F_{-\infty}(x)$ are identical, and therefore they are $M_{\text {int }}$-equivalent.

For the inductive step, since $F(x)$ is in positive normal form, we need to consider only two cases, depending on whether the topmost connective of $F(x)$ is \wedge or \vee. Thus, assume that $F(x)$ is of the form $G(x) \wedge H(x)$. By the inductive hypothesis, there exists integers ν_{1} and ν_{2} such that

$$
[G(x)]^{\mathcal{A} \circ\{x / n\}}=\left[G_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n\}}, \quad \text { for all } n<\nu_{1}
$$

and

$$
[H(x)]^{\mathcal{A} \circ\{x / n\}}=\left[H_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n\}}, \quad \text { for all } n<\nu_{2}
$$

But then, since $G_{-\infty}(x) \wedge H_{-\infty}(x)$ is identical to $F_{-\infty}(x)$, it suffices to take $\nu=\min \left(\nu_{1}, \nu_{2}\right)$.

The case in which $F(x)$ is of the form $G(x) \vee H(x)$ is similar to the one in which $F(x)$ is of the form $G(x) \wedge H(x)$.

4.2.4 Proposition

In Algorithm eliminate-variable-Cooper, let $F(x)$ be the formula obtained at the end of line 5. Let \mathcal{A} be any M_{int}-interpretation, and let $n=x^{\mathcal{A}}$. Then

$$
\left[F_{-\infty}(x)\right]^{\mathcal{A}}=\left[F_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n+\lambda \delta\}}, \quad \text { for all } \lambda \in \mathbb{Z}
$$

Proof. We proceed by structural induction on $F_{-\infty}(x)$.
For the base case, if $F_{-\infty}(x)$ is a literal then either it does not contain x, or it is of the form $h_{i} \mid x+c_{i}$ or $\neg\left(k_{i} \mid x+d_{i}\right)$. The case in which $F_{-\infty}(x)$ is a literal not containing x is trivial. If $F_{-\infty}(x)$ is a literal of the form $h_{i} \mid x+c_{i}$ or $\neg\left(k_{i} \mid x+d_{i}\right)$ then it suffices to note that $a \mid b$ if and only if $a \mid b+c$, for any integer a, b, c such that c is a multiple of a.

For the inductive step, if $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \wedge H_{-\infty}(x)$ then we have

$$
\left[G_{-\infty}(x)\right]^{\mathcal{A}}=\left[G_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n+\lambda \delta\}}, \quad \text { for all } \lambda \in \mathbb{Z}
$$

and

$$
\left[H_{-\infty}(x)\right]^{\mathcal{A}}=\left[H_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n+\lambda \delta\}}, \quad \text { for all } \lambda \in \mathbb{Z}
$$

Thus,

$$
\left[G_{-\infty}(x) \wedge H_{-\infty}(x)\right]^{\mathcal{A}}=\left[G_{-\infty}(x) \wedge H_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / n+\lambda \delta\}}, \quad \text { for all } \lambda \in \mathbb{Z}
$$

The case in which $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \vee H_{-\infty}(x)$ is similar to the one in which $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \wedge H_{-\infty}(x)$.

4.2.5 Proposition

In Algorithm eliminate-variable-cooper, let $F(x)$ be the formula obtained at the end of line 5. Then $\left(\exists_{\mathrm{int}} x\right) F(x)$ and $F^{-\infty}$ are M_{int}-equivalent.

Proof. Let \mathcal{A} be an $M_{\text {int }}$-interpretation such that $\left[F^{-\infty}\right]^{\mathcal{A}}=$ true. If

$$
\left[\bigvee_{j=1}^{\delta} \bigvee_{b_{i}} F\left(b_{i}+j\right)\right]^{\mathcal{A}}=\operatorname{true}
$$

then clearly

$$
\left[\left(\exists_{\mathrm{int}} x\right) F(x)\right]^{\mathcal{A}}=\text { true }
$$

Otherwise, $\left[F_{-\infty}(j)\right]^{\mathcal{A}}=$ true, for some $j \in\{1, \ldots, \delta\}$. But then, by Propositions 4.2.3 and 4.2.4, we have $\left[\left(\exists_{\text {int }} x\right) F(x)\right]^{\mathcal{A}}=$ true.

Vice versa, let \mathcal{A} be an interpretation such that $\left[\left(\exists_{\text {int }} x\right) F(x)\right]^{\mathcal{A}}=$ true, and let n be an integer such that $[F(x)]^{\mathcal{A} \circ\{x / n\}}=$ true. Also assume, for a contradiction, that $\left[F^{-\infty}\right]^{\mathcal{A}}=$ false.

We claim that

$$
[F(x)]^{\mathcal{A} \circ\{x / n-\delta\}}=\text { true } .
$$

To see this, let $\mathcal{B}=\mathcal{A} \circ\{x / n-\delta\}$, and note that if $[F(x)]^{\mathcal{B}}=$ false then, by Proposition 4.2.2, there exists a literal ℓ in $F(x)$ such that $\ell^{\mathcal{A}}=$ true and $\ell^{\mathcal{B}}=$ false. However, if ℓ does not contain x, or it is of the form $x<a_{i}$, $h_{i} \mid x+c_{i}$ or $\neg\left(k_{i} \mid d_{i}\right)$ then it must be $\ell^{\mathcal{A}}=\ell^{\mathcal{B}}$. If instead ℓ is of the form $b_{i}<x$, then we have $t^{\mathcal{A}}<n$ and $n-\delta \leq t^{\mathcal{A}}$. It follows that $t^{\mathcal{A}}<n \leq t^{\mathcal{A}}+\delta$,
and therefore there exists an integer $j \in\{1, \ldots, \delta\}$ such that $[F(t+j)]^{\mathcal{A}}=$ true. But then $\left[F^{-\infty}\right]^{\mathcal{A}}=$ true, a contradiction.

Thus, we conclude that $[F(x)]^{\mathcal{A} \circ\{x / n-\delta\}}=$ true, and iterating the same reasoning we can also conclude that

$$
[F(x)]^{\mathcal{A} \circ\{x / n-\lambda \delta\}}=\text { true }, \quad \text { for all } \lambda>0
$$

But then, by Proposition 4.2.3, we have that $\left[F_{-\infty}(x)\right]^{\mathcal{A} \circ\{x / m\}}=$ true, for some integer m sufficiently small. But then, by Proposition 4.2.4, it follows that

$$
\left[\bigvee_{j=1}^{\delta} F_{-\infty}(j)\right]^{\mathcal{A}}=\text { true }
$$

and therefore $\left[F^{-\infty}\right]^{\mathcal{A}}=$ true.

4.2.6 Proposition

In Algorithm Eliminate-variable-Cooper, $\left(\exists_{\mathrm{int}} x\right) F(x)$ and $F^{-\infty}$ are $M_{\mathrm{int}}{ }^{-}$ equivalent.

Proof. Instructions at lines 2 thru 5 clearly preserve equivalence. Line 6 preserves equivalence by Proposition 4.2.5.

