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4.1

The modelclass

4.1.1 Definition
The SIGNATURE OF INTEGERS X contains the following symbols:

The sort int for integer numbers.

A constant symbol ¢, of sort int, for all integer numbers m € Z.

The binary infix predicate symbol + (addition), of arity real x real — real.
The unary function symbol — (unary minus), of arity real — real.

For each integer k € Z, a unary function symbol k x e (scalar multiplica-
tion), of arity real — real.

For each positive integer k € ZT, a unary predicate symbol k | e (divisi-
bility), of arity real.

The binary infix predicate symbol < (strict ordering), of arity real x real.

4.1.2 Definition
The STANDARD int-STRUCTURE is the unique Yj-structure A satisfying the
following properties:

1.
2.
3.

Aint - Z
¢t = m, for all integer numbers m € Z.

The symbols +, —, X, |, and < are interpreted according to their standard
interpretation over Z.
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4.1.3 Definition
The MODELCLASS OF INTEGERS is the pair My = (Zin, A), where A is the
class of all Xj-structures that are isomorphic to the standard int-structure.

4.2 Cooper

4.2.1 Algorithm (ELIMINATE-VARIABLE-COOPER)
Input: A quantifier-free ¥;p-formula F(x)
Output: A quantifier-free Niy-formula F'~°° that is Mig-equivalent to (Jine ) F(z),
and such that vars(F~*°) = vars(F(z)) \ {z}
1: function ELIMINATE-VARIABLE-COOPER(F(x))
2: Convert F(z) in positive normal form.
3: Replace each literal in F(z) of the form
s=t, -(s =1t), (s < t)
with Mjnt-equivalent formulae involving only <. This can be done by
means of the following rewrite rules

s=1 - s<t+1 AN t<s+1,
(s =1t) = s<tVit<s,
(s < t) = t<s+1.

At the end of this instruction, all literals in F(x) will be of the form

s<t, k|t, —(k|t).
4: By opportunely collecting all terms involving x, rewrite F'(x) so that
each literal in it either does not contain x, or is of the form

kx <t, t<kx, kE|hx+t, —(k | hx +t),

where ¢ does not involve .
5: Let ¢’ be the least common multiple of the coefficients of x in F(z).

Multiply all atoms in F(z) by opportune constants, so that §’ becomes
the coefficient of all occurrences of z. Finally, replace (Jin z)F(8'x)
with (Fine z)(F(x) A’ | x).

The result is a formula in positive normal form whose literals involving
x are of the form

(A) z < ay,

(B) b; < =z,

(C) hi|z+ci,
(D) —(ki | =+ ds)

where the a;, b;, ¢;, and d; are terms not involving x.
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6: Let § be the least common multiple of all the h; and k;. Denote with
F_o(z) the formula obtained from F(z) by replacing all literals of
the form (A) with true, and all literals of the form (B) with false.
Return the formula

s
F=: \/ Foli) v\ \ Fbi +3).
Jj=1 J=1 b;

7: end function
Proposition
Let F be a quantifier-free formula in positive normal form, and let A, B be

interpretations such that F* = true and F® = false. Then there exists a literal
¢ in F such that ¢* = true and (® = false.

ProoF. By structural induction on F'.

Proposition

In Algorithm ELIMINATE-VARIABLE-COOPER, let F'(x) be the formula obtained
at the end of line 5. Let A be any Min-interpretation. Then there exists an
integer v such that

[F(z))Aete/nt = [F_ o (2)]Aole/n) foralln <v.

PROOF. We proceed by structural induction on F(z).

For the base case, if F'(z) is a literal of the form a; < x then F_,(z) is
false, and it suffices to take v = s. If instead F(x) is a literal of the form
x < b; then F_. () is true, and it suffices to take v = t*. Finally, if F(z) is
a literal not containing z, or a literal of the form h; | x + ¢; or =(k; | « + d;),
then F(z) and F_(z) are identical, and therefore they are M;n-equivalent.

For the inductive step, since F(x) is in positive normal form, we need to
consider only two cases, depending on whether the topmost connective of F(x)
is A or V. Thus, assume that F'(x) is of the form G(z) A H(x). By the inductive
hypothesis, there exists integers v and v, such that

[G(x)]ot/m) = (G ()] Aot/ for all n < .
and
[H ()]t} = [H_ o (z) Aot/ for all n < vy .

But then, since G_o(2) A H_oo(x) is identical to F_ (), it suffices to take
v = min(v1, v2).

The case in which F(x) is of the form G(x) vV H(x) is similar to the one in
which F(z) is of the form G(x) A H(z).

Proposition
In Algorithm ELIMINATE-VARIABLE-COOPER, let F'(x) be the formula obtained
at the end of line 5. Let A be any Min-interpretation, and let n = x. Then

[Fooo ()] = [F_oo()]Aote/n A0} for all N € Z.
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PROOF. We proceed by structural induction on F_ ().

For the base case, if F_.(x) is a literal then either it does not contain z,
or it is of the form h; | x 4+ ¢; or =(k; |  + d;). The case in which F_(z) is a
literal not containing x is trivial. If F_ () is a literal of the form h; | z + ¢;
or —=(k; | x + d;) then it suffices to note that a | b if and only if a | b+ ¢, for any
integer a, b, ¢ such that c¢ is a multiple of a.

For the inductive step, if F_ () is of the form G_o(z) A H_oo(x) then we
have

(G oo ()] = [G oo () Aole/nHA0} forall \ € Z,
and
[H_ oo (2)]* = [H_ oo () Aotm/mHA} for all A € Z.
Thus,
[Goo (@) A H oo (@) = [G—oo(z) A H_ oo ()]4°12/mF29} - for all X € Z.

The case in which F_(z) is of the form G_(x) V H_s(x) is similar to
the one in which F_ o (z) is of the form G_o(z) A H_oo(2).

Proposition
In Algorithm ELIMINATE-VARIABLE-COOPER, let F'(x) be the formula obtained
at the end of line 5. Then (Fine x)F(z) and F~°° are Min-equivalent.

PROOF. Let A be an M;y-interpretation such that [F'~°]4 = true. If

A

é
\/\/F(bi—i-j) = true

Jj=1 b;

then clearly
[(Fine 2)F ()] = true.

Otherwise, [F_(j)]"* = true, for some j € {1,...,6}. But then, by Proposi-
tions 4.2.3 and 4.2.4, we have [(Jiny 2)F(2)]* = true.

Vice versa, let A be an interpretation such that [(Jine z)F(2)]* = true,
and let n be an integer such that [F(z)]4°{#/"} = true. Also assume, for a
contradiction, that [F~>]4 = false.

We claim that

[F(2)]Ao12/m=0} = trye.

To see this, let B = A o {x/n — §}, and note that if [F'(x)]® = false then,
by Proposition 4.2.2, there exists a literal £ in F(z) such that ¢ = true and
(B = false. However, if ¢ does not contain x, or it is of the form z < aj,
hi | © 4 ¢; or =(k; | d;) then it must be ¢* = ¢®. If instead ¢ is of the form
b; < x, then we have t* < n and n — § < t*. It follows that t* < n < t4 + 4,
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and therefore there exists an integer j € {1,...,d} such that [F(t+ j)]* = true.
But then [F~°]* = true, a contradiction.

Thus, we conclude that [F(z)]#°1#/7=%} = true, and iterating the same
reasoning we can also conclude that

[F ()] A42/n=A0} = trye, for all A > 0.

But then, by Proposition 4.2.3, we have that [F_.(z)]4°1#/™} = true, for
some integer m sufficiently small. But then, by Proposition 4.2.4, it follows that

A

5
\/ F_(j)| = true,
j=1

and therefore [F~>]* = true.

Proposition
In Algorithm ELIMINATE-VARIABLE-COOPER, (Jint 2)F(z) and F~°° are M-
equivalent.

PROOF. Instructions at lines 2 thru 5 clearly preserve equivalence. Line 6 pre-
serves equivalence by Proposition 4.2.5.
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