Chapter 4

Integers

DECISION PROCEDURES

Last update of lecture notes: Tuesday, March 7, 2006 Last update of this chapter: Monday, February 27, 2006.

4.1 The modelclass

4.1.1 Definition

The SIGNATURE OF INTEGERS Σ_{int} contains the following symbols:

- The sort int for integer numbers.
- A constant symbol c_m of sort int, for all integer numbers $m \in \mathbb{Z}$.
- The binary infix predicate symbol + (addition), of arity real \times real \rightarrow real.
- The unary function symbol (unary minus), of arity real \rightarrow real.
- For each integer $k \in \mathbb{Z}$, a unary function symbol $k \times \bullet$ (scalar multiplication), of arity real \to real.
- For each positive integer $k \in \mathbb{Z}^+$, a unary predicate symbol $k \mid \bullet \ (\textit{divisi-bility})$, of arity real.
- The binary infix predicate symbol < (strict ordering), of arity real \times real.

4.1.2 Definition

The STANDARD int-STRUCTURE is the unique Σ_{int} -structure \mathcal{A} satisfying the following properties:

- 1. $A_{\mathsf{int}} = \mathbb{Z}$.
- 2. $c_m^A = m$, for all integer numbers $m \in \mathbb{Z}$.
- 3. The symbols $+,-,\times,|,$ and < are interpreted according to their standard interpretation over \mathbb{Z} .

4.1.3 Definition

The MODELCLASS OF INTEGERS is the pair $M_{\text{int}} = (\Sigma_{\text{int}}, \mathbf{A})$, where **A** is the class of all Σ_{int} -structures that are isomorphic to the standard int-structure.

4.2Cooper

4.2.1 Algorithm (ELIMINATE-VARIABLE-COOPER)

Input: A quantifier-free Σ_{int} -formula F(x)

Output: A quantifier-free Σ_{int} -formula $F^{-\infty}$ that is M_{int} -equivalent to $(\exists_{\text{int}} x)F(x)$, and such that $vars(F^{-\infty}) = vars(F(x)) \setminus \{x\}$

- 1: **function** ELIMINATE-VARIABLE-COOPER(F(x))
- 2: Convert F(x) in positive normal form.
- 3: Replace each literal in F(x) of the form

$$s = t$$
, $\neg (s = t)$, $\neg (s < t)$

with $M_{\rm int}$ -equivalent formulae involving only <. This can be done by means of the following rewrite rules

$$\begin{array}{lll} s = t & \Longrightarrow & s < t+1 \ \land \ t < s+1 \,, \\ \neg (s = t) & \Longrightarrow & s < t \ \lor \ t < s \,, \\ \neg (s < t) & \Longrightarrow & t < s+1 \,. \end{array}$$

At the end of this instruction, all literals in F(x) will be of the form

$$s < t$$
, $k \mid t$, $\neg (k \mid t)$.

By opportunely collecting all terms involving x, rewrite F(x) so that 4: each literal in it either does not contain x, or is of the form

$$kx < t$$
, $t < kx$, $k \mid hx + t$, $\neg (k \mid hx + t)$,

where t does not involve x. Let δ' be the least common multiple of the coefficients of x in F(x). Multiply all atoms in F(x) by opportune constants, so that δ' becomes the coefficient of all occurrences of x. Finally, replace $(\exists_{int} x)F(\delta'x)$ with $(\exists_{\mathsf{int}} \ x)(F(x) \land \delta' \mid x)$.

The result is a formula in positive normal form whose literals involving x are of the form

(A) $x < a_i$,

5:

- (B) $b_i < x$,
- (C) $h_i | x + c_i$,
- (D) $\neg (k_i \mid x + d_i)$

where the a_i , b_i , c_i , and d_i are terms not involving x.

4.2. Cooper 25

6: Let δ be the least common multiple of all the h_i and k_i . Denote with $F_{-\infty}(x)$ the formula obtained from F(x) by replacing all literals of the form (A) with true, and all literals of the form (B) with false. Return the formula

$$F^{-\infty}: \bigvee_{j=1}^{\delta} F_{-\infty}(j) \vee \bigvee_{j=1}^{\delta} \bigvee_{b_i} F(b_i+j).$$

7: end function

4.2.2 Proposition

Let F be a quantifier-free formula in positive normal form, and let A, B be interpretations such that F^A = true and F^B = false. Then there exists a literal ℓ in F such that ℓ^A = true and ℓ^B = false.

PROOF. By structural induction on F.

4.2.3 Proposition

In Algorithm ELIMINATE-VARIABLE-COOPER, let F(x) be the formula obtained at the end of line 5. Let A be any M_{int} -interpretation. Then there exists an integer ν such that

$$[F(x)]^{\mathcal{A}\circ\{x/n\}} = [F_{-\infty}(x)]^{\mathcal{A}\circ\{x/n\}}, \quad \text{for all } n < \nu.$$

PROOF. We proceed by structural induction on F(x).

For the base case, if F(x) is a literal of the form $a_i < x$ then $F_{-\infty}(x)$ is false, and it suffices to take $\nu = s^A$. If instead F(x) is a literal of the form $x < b_i$ then $F_{-\infty}(x)$ is true, and it suffices to take $\nu = t^A$. Finally, if F(x) is a literal not containing x, or a literal of the form $h_i \mid x + c_i$ or $\neg(k_i \mid x + d_i)$, then F(x) and $F_{-\infty}(x)$ are identical, and therefore they are M_{int} -equivalent.

For the inductive step, since F(x) is in positive normal form, we need to consider only two cases, depending on whether the topmost connective of F(x) is \wedge or \vee . Thus, assume that F(x) is of the form $G(x) \wedge H(x)$. By the inductive hypothesis, there exists integers ν_1 and ν_2 such that

$$[G(x)]^{\mathcal{A} \circ \{x/n\}} = [G_{-\infty}(x)]^{\mathcal{A} \circ \{x/n\}}, \qquad \text{for all } n < \nu_1.$$

and

$$[H(x)]^{\mathcal{A}\circ\{x/n\}} = [H_{-\infty}(x)]^{\mathcal{A}\circ\{x/n\}}\,, \qquad \qquad \text{for all } n<\nu_2\,.$$

But then, since $G_{-\infty}(x) \wedge H_{-\infty}(x)$ is identical to $F_{-\infty}(x)$, it suffices to take $\nu = \min(\nu_1, \nu_2)$.

The case in which F(x) is of the form $G(x) \vee H(x)$ is similar to the one in which F(x) is of the form $G(x) \wedge H(x)$.

4.2.4 Proposition

In Algorithm ELIMINATE-VARIABLE-COOPER, let F(x) be the formula obtained at the end of line 5. Let A be any M_{int} -interpretation, and let $n = x^A$. Then

$$[F_{-\infty}(x)]^{\mathcal{A}} = [F_{-\infty}(x)]^{\mathcal{A} \circ \{x/n + \lambda \delta\}}, \qquad \qquad \text{for all } \lambda \in \mathbb{Z}.$$

PROOF. We proceed by structural induction on $F_{-\infty}(x)$.

For the base case, if $F_{-\infty}(x)$ is a literal then either it does not contain x, or it is of the form $h_i \mid x + c_i$ or $\neg(k_i \mid x + d_i)$. The case in which $F_{-\infty}(x)$ is a literal not containing x is trivial. If $F_{-\infty}(x)$ is a literal of the form $h_i \mid x + c_i$ or $\neg(k_i \mid x + d_i)$ then it suffices to note that $a \mid b$ if and only if $a \mid b + c$, for any integer a, b, c such that c is a multiple of a.

For the inductive step, if $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \wedge H_{-\infty}(x)$ then we have

$$[G_{-\infty}(x)]^{\mathcal{A}} = [G_{-\infty}(x)]^{\mathcal{A} \circ \{x/n + \lambda \delta\}},$$
 for all $\lambda \in \mathbb{Z}$,

and

$$[H_{-\infty}(x)]^{\mathcal{A}} = [H_{-\infty}(x)]^{\mathcal{A} \circ \{x/n + \lambda \delta\}},$$
 for all $\lambda \in \mathbb{Z}$.

Thus,

$$[G_{-\infty}(x) \wedge H_{-\infty}(x)]^{\mathcal{A}} = [G_{-\infty}(x) \wedge H_{-\infty}(x)]^{\mathcal{A} \circ \{x/n + \lambda \delta\}}, \quad \text{for all } \lambda \in \mathbb{Z}.$$

The case in which $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \vee H_{-\infty}(x)$ is similar to the one in which $F_{-\infty}(x)$ is of the form $G_{-\infty}(x) \wedge H_{-\infty}(x)$.

4.2.5 Proposition

In Algorithm ELIMINATE-VARIABLE-COOPER, let F(x) be the formula obtained at the end of line 5. Then $(\exists_{int} x)F(x)$ and $F^{-\infty}$ are M_{int} -equivalent.

PROOF. Let \mathcal{A} be an M_{int} -interpretation such that $[F^{-\infty}]^{\mathcal{A}} = true$. If

$$\left[\bigvee_{j=1}^{\delta}\bigvee_{b_i}F(b_i+j)\right]^{\mathcal{A}}=true$$

then clearly

$$[(\exists_{\mathsf{int}} \ x)F(x)]^{\mathcal{A}} = true.$$

Otherwise, $[F_{-\infty}(j)]^{\mathcal{A}} = true$, for some $j \in \{1, \ldots, \delta\}$. But then, by Propositions 4.2.3 and 4.2.4, we have $[(\exists_{int} \ x)F(x)]^{\mathcal{A}} = true$.

Vice versa, let \mathcal{A} be an interpretation such that $[(\exists_{\mathsf{int}}\ x)F(x)]^{\mathcal{A}} = \mathit{true}$, and let n be an integer such that $[F(x)]^{\mathcal{A} \circ \{x/n\}} = \mathit{true}$. Also assume, for a contradiction, that $[F^{-\infty}]^{\mathcal{A}} = \mathit{false}$.

We claim that

$$[F(x)]^{\mathcal{A} \circ \{x/n-\delta\}} = true.$$

To see this, let $\mathcal{B} = \mathcal{A} \circ \{x/n - \delta\}$, and note that if $[F(x)]^{\mathcal{B}} = false$ then, by Proposition 4.2.2, there exists a literal ℓ in F(x) such that $\ell^{\mathcal{A}} = true$ and $\ell^{\mathcal{B}} = false$. However, if ℓ does not contain x, or it is of the form $x < a_i$, $h_i \mid x + c_i$ or $\neg(k_i \mid d_i)$ then it must be $\ell^{\mathcal{A}} = \ell^{\mathcal{B}}$. If instead ℓ is of the form $b_i < x$, then we have $t^{\mathcal{A}} < n$ and $n - \delta \le t^{\mathcal{A}}$. It follows that $t^{\mathcal{A}} < n \le t^{\mathcal{A}} + \delta$,

4.2. Cooper 27

and therefore there exists an integer $j \in \{1, ..., \delta\}$ such that $[F(t+j)]^{\mathcal{A}} = true$. But then $[F^{-\infty}]^{\mathcal{A}} = true$, a contradiction. Thus, we conclude that $[F(x)]^{\mathcal{A} \circ \{x/n-\delta\}} = true$, and iterating the same

reasoning we can also conclude that

$$[F(x)]^{A \circ \{x/n - \lambda \delta\}} = true,$$
 for all $\lambda > 0$.

But then, by Proposition 4.2.3, we have that $[F_{-\infty}(x)]^{A\circ\{x/m\}}=true$, for some integer m sufficiently small. But then, by Proposition 4.2.4, it follows that

$$\left[\bigvee_{j=1}^{\delta} F_{-\infty}(j)\right]^{\mathcal{A}} = true,$$

and therefore $[F^{-\infty}]^{\mathcal{A}} = true$.

4.2.6 Proposition

In Algorithm Eliminate-Variable-Cooper, $(\exists_{int} \ x)F(x)$ and $F^{-\infty}$ are M_{int} equivalent.

Proof. Instructions at lines 2 thru 5 clearly preserve equivalence. Line 6 preserves equivalence by Proposition 4.2.5.