
Chapter 4

Integers

Decision Procedures
Last update of lecture notes: Tuesday, March 7, 2006
Last update of this chapter: Monday, February 27, 2006.

4.1 The modelclass

4.1.1 Definition
The signature of integers Σint contains the following symbols:

• The sort int for integer numbers.

• A constant symbol cm of sort int, for all integer numbers m ∈ Z.

• The binary infix predicate symbol + (addition), of arity real× real → real.

• The unary function symbol − (unary minus), of arity real → real.

• For each integer k ∈ Z, a unary function symbol k × • (scalar multiplica-

tion), of arity real → real.

• For each positive integer k ∈ Z
+, a unary predicate symbol k | • (divisi-

bility), of arity real.

• The binary infix predicate symbol < (strict ordering), of arity real× real.

4.1.2 Definition
The standard int-structure is the unique Σint-structure A satisfying the
following properties:

1. Aint = Z.

2. cA
m = m, for all integer numbers m ∈ Z.

3. The symbols +, −, ×, |, and < are interpreted according to their standard
interpretation over Z.

Copyright c© 2006 Calogero G. Zarba 23

24 Chapter 4. Integers

4.1.3 Definition
The modelclass of integers is the pair Mint = (Σint,A), where A is the
class of all Σint-structures that are isomorphic to the standard int-structure.

4.2 Cooper

4.2.1 Algorithm (eliminate-variable-cooper)
Input: A quantifier-free Σint-formula F (x)
Output: A quantifier-free Σint-formula F−∞ that is Mint-equivalent to (∃int x)F (x),

and such that vars(F−∞) = vars(F (x)) \ {x}
1: function eliminate-variable-cooper(F (x))
2: Convert F (x) in positive normal form.
3: Replace each literal in F (x) of the form

s = t , ¬(s = t) , ¬(s < t)

with Mint-equivalent formulae involving only <. This can be done by
means of the following rewrite rules

s = t =⇒ s < t + 1 ∧ t < s + 1 ,

¬(s = t) =⇒ s < t ∨ t < s ,

¬(s < t) =⇒ t < s + 1 .

At the end of this instruction, all literals in F (x) will be of the form

s < t , k | t , ¬(k | t) .
4: By opportunely collecting all terms involving x, rewrite F (x) so that

each literal in it either does not contain x, or is of the form

kx < t , t < kx , k | hx + t , ¬(k | hx + t) ,

where t does not involve x.
5: Let δ′ be the least common multiple of the coefficients of x in F (x).

Multiply all atoms in F (x) by opportune constants, so that δ′ becomes
the coefficient of all occurrences of x. Finally, replace (∃int x)F (δ′x)
with (∃int x)(F (x) ∧ δ′ | x).
The result is a formula in positive normal form whose literals involving
x are of the form

(A) x < ai,

(B) bi < x,

(C) hi | x + ci,

(D) ¬(ki | x + di)

where the ai, bi, ci, and di are terms not involving x.

4.2. Cooper 25

6: Let δ be the least common multiple of all the hi and ki. Denote with
F−∞(x) the formula obtained from F (x) by replacing all literals of
the form (A) with true, and all literals of the form (B) with false.
Return the formula

F−∞ :

δ
∨

j=1

F−∞(j) ∨

δ
∨

j=1

∨

bi

F (bi + j) .

7: end function

4.2.2 Proposition
Let F be a quantifier-free formula in positive normal form, and let A, B be

interpretations such that FA = true and FB = false. Then there exists a literal

` in F such that `A = true and `B = false.

Proof. By structural induction on F .

4.2.3 Proposition
In Algorithm eliminate-variable-cooper, let F (x) be the formula obtained

at the end of line 5. Let A be any Mint-interpretation. Then there exists an

integer ν such that

[F (x)]A◦{x/n} = [F−∞(x)]A◦{x/n} , for all n < ν .

Proof. We proceed by structural induction on F (x).
For the base case, if F (x) is a literal of the form ai < x then F−∞(x) is

false, and it suffices to take ν = sA. If instead F (x) is a literal of the form
x < bi then F−∞(x) is true, and it suffices to take ν = tA. Finally, if F (x) is
a literal not containing x, or a literal of the form hi | x + ci or ¬(ki | x + di),
then F (x) and F−∞(x) are identical, and therefore they are Mint-equivalent.

For the inductive step, since F (x) is in positive normal form, we need to
consider only two cases, depending on whether the topmost connective of F (x)
is ∧ or ∨. Thus, assume that F (x) is of the form G(x)∧H(x). By the inductive
hypothesis, there exists integers ν1 and ν2 such that

[G(x)]A◦{x/n} = [G−∞(x)]A◦{x/n} , for all n < ν1 .

and

[H(x)]A◦{x/n} = [H−∞(x)]A◦{x/n} , for all n < ν2 .

But then, since G−∞(x) ∧ H−∞(x) is identical to F−∞(x), it suffices to take
ν = min(ν1, ν2).

The case in which F (x) is of the form G(x) ∨ H(x) is similar to the one in
which F (x) is of the form G(x) ∧ H(x).

4.2.4 Proposition
In Algorithm eliminate-variable-cooper, let F (x) be the formula obtained

at the end of line 5. Let A be any Mint-interpretation, and let n = xA. Then

[F−∞(x)]A = [F−∞(x)]A◦{x/n+λδ} , for all λ ∈ Z .

26 Chapter 4. Integers

Proof. We proceed by structural induction on F−∞(x).
For the base case, if F−∞(x) is a literal then either it does not contain x,

or it is of the form hi | x + ci or ¬(ki | x + di). The case in which F−∞(x) is a
literal not containing x is trivial. If F−∞(x) is a literal of the form hi | x + ci

or ¬(ki | x + di) then it suffices to note that a | b if and only if a | b + c, for any
integer a, b, c such that c is a multiple of a.

For the inductive step, if F−∞(x) is of the form G−∞(x)∧H−∞(x) then we
have

[G−∞(x)]A = [G−∞(x)]A◦{x/n+λδ} , for all λ ∈ Z ,

and

[H−∞(x)]A = [H−∞(x)]A◦{x/n+λδ} , for all λ ∈ Z .

Thus,

[G−∞(x) ∧ H−∞(x)]A = [G−∞(x) ∧ H−∞(x)]A◦{x/n+λδ} , for all λ ∈ Z .

The case in which F−∞(x) is of the form G−∞(x) ∨ H−∞(x) is similar to
the one in which F−∞(x) is of the form G−∞(x) ∧ H−∞(x).

4.2.5 Proposition
In Algorithm eliminate-variable-cooper, let F (x) be the formula obtained

at the end of line 5. Then (∃int x)F (x) and F−∞ are Mint-equivalent.

Proof. Let A be an Mint-interpretation such that [F−∞]A = true. If

δ
∨

j=1

∨

bi

F (bi + j)

A

= true

then clearly
[(∃int x)F (x)]A = true .

Otherwise, [F−∞(j)]A = true, for some j ∈ {1, . . . , δ}. But then, by Proposi-
tions 4.2.3 and 4.2.4, we have [(∃int x)F (x)]A = true.

Vice versa, let A be an interpretation such that [(∃int x)F (x)]A = true,
and let n be an integer such that [F (x)]A◦{x/n} = true. Also assume, for a
contradiction, that [F−∞]A = false.

We claim that
[F (x)]A◦{x/n−δ} = true .

To see this, let B = A ◦ {x/n − δ}, and note that if [F (x)]B = false then,
by Proposition 4.2.2, there exists a literal ` in F (x) such that `A = true and
`B = false. However, if ` does not contain x, or it is of the form x < ai,
hi | x + ci or ¬(ki | di) then it must be `A = `B. If instead ` is of the form
bi < x, then we have tA < n and n − δ ≤ tA. It follows that tA < n ≤ tA + δ,

4.2. Cooper 27

and therefore there exists an integer j ∈ {1, . . . , δ} such that [F (t+ j)]A = true.
But then [F−∞]A = true, a contradiction.

Thus, we conclude that [F (x)]A◦{x/n−δ} = true, and iterating the same
reasoning we can also conclude that

[F (x)]A◦{x/n−λδ} = true , for all λ > 0 .

But then, by Proposition 4.2.3, we have that [F−∞(x)]A◦{x/m} = true, for
some integer m sufficiently small. But then, by Proposition 4.2.4, it follows that

δ
∨

j=1

F−∞(j)

A

= true ,

and therefore [F−∞]A = true.

4.2.6 Proposition
In Algorithm eliminate-variable-cooper, (∃int x)F (x) and F−∞ are Mint-

equivalent.

Proof. Instructions at lines 2 thru 5 clearly preserve equivalence. Line 6 pre-
serves equivalence by Proposition 4.2.5.

28 Chapter 4. Integers

