Chapter 5

Lists

DEcCISION PROCEDURES
LAST UPDATE OF LECTURE NOTES: TUESDAY, MARCH 7, 2006
LAST UPDATE OF THIS CHAPTER: WEDNESDAY, MARCH 1, 2006.

5.1 Constructors

5.1.1 Definition
The SIGNATURE OF CONSTRUCTORS Ycons contains the following symbols:

e A sort elem for elements and a sort list for lists of elements.
e the constant symbol nil, of sort list;
e the function symbol cons, of arity elem x list — list.

5.1.2 Definition
A STANDARD cons-STRUCTURE A is a Yions-structure satisfying the following
conditions:

o Alist = (Aelem)*;
o il = ();

e cons(e, {e1,...,e,)) = {e,e1,...,e,), for each n > 0 and e, ey,...,e, €
Aelem-

5.1.3 Definition
The MODELCLASS OF CONSTRUCTORS is the pair Mcons = (Zcons; A ), where A is
the class of all Yons-structures that are isomorphic to standard cons-structures.

Copyright (© 2006 Calogero G. Zarba 29



5.2.1

5.2.2

5.2.3

5.3.1

30 CHAPTER 5. LISTS

5.2 Lists

Definition
The SIGNATURE OF LISTS Y5t extends the signature of constructors Ycons with
the function symbols:

e car, of arity list — elem;
e cdr, of arity list — list.

Definition
A STANDARD list-STRUCTURE A is a Yjg-structure satisfying the following con-
ditions:

o A¥ens ig a standard cons-structure;

e car’*({e1,...,e,)) = e1, for eachn > 0 and ey, ..., e, € Acem;
° cdrA(<el, coyen)) = {ea,... en), for each n >0 and ey, ..., e, € Acem-
Definition

The MODELCLASS OF LISTS is the pair Mjst = (Zjist, A), where A is the class of
all Yjist-structures that are isomorphic to standard list-structures.

5.3 From constructors to equality with acyclic-
ity test

Algorithm (1S-SATISFIABLE-CONSTRUCTORS)
Input: A finite set ' of flat Xons-literals
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function IS-SATISFIABLE-CONSTRUCTORS(T)
2: X «— vars(T)
3: For each literal of the form = = cons(e,y) in T', add to T the literals

e = car(x), y ~ cdr(z)
4: T « the set of terms occurring in I'
5: R — {(s,t) € T x T | the literal s ~ ¢ is in I'}
6: C «+ the congruence closure of R with respect to T’
7: Let < be the binary relation of Xt defined by letting z < y iff there
is a literal ¢’ ~ cons(e, z’) in I" such that (z,2') € C and (y,y') € C
8: if t#yisin I and (z,y) € C then
9: return unsatisfiable
10: else if = ~ nil and y = cons(e, z) are in I, and (z,y) € C then
11: return unsatisfiable
12: else if < is not acyclic then
13: return unsatisfiable

14: else



5.3. FROM CONSTRUCTORS TO EQUALITY WITH ACYCLICITY TEST 31

15: return satisfiable
16: end if
17: end function

5.3.2 Proposition
If Algorithm 1S-SATISFIABLE-CONSTRUCTORS returns satisfiable then ' is
Meons-satisfiable.

PRrROOF. Assume without loss of generality that Xeem # @. T is clearly satisfied
by the M ons-interpretation A over X defined as follows. First, we let

Aelem - (Xelem/c) U {VO} .

where vy ¢ Xelem/C. Then, we let

et = le]o, for all elem-variables e € Xejem -
We also let
= (), if the literal x = nil is in T",
and
ot = (e oy, if the literal = ~ cons(e,y) isin T".

For all the other list-variables, we let
,TA:<VO>O"'O<I/O>
~—_————
h(z) times
where h : Xjis — N is an arbitrarily fixed injective function.

5.3.3 Proposition
If Algorithm 1S-SATISFIABLE-CONSTRUCTORS returns unsatisfiable then I' is
Meons-unsatisfiable.

PROOF. We prove the stronger fact that I" is M)s-unsatisfiable.

By contradiction, assume that I' is M-satisfiable. Then there exists an
Miist-interpretation A such that A = T'. Let R’ be the binary relation of T
defined by letting (s,t) € R’ iff s* = 4. Then C C R'.

If the algorithm ended at line 9, then (z,y) € C, which implies 24 = y
contradicting the fact that the literal z % y is in T.

If the algorithm ended at line 11, then (z,y) € C, which implies nil* =
[cons(e, 2)]*, a contradiction.

If the algorithm ended at line 13, then there is a cycle z1 < x93 <X -+ -z, =Xz,
implying that x7' = [cons(eq, x2)]*, 22 = [cons(eq, 13)]4, ..., 27t = [cons(e,, z1)]4,
a contradiction.

A

5.3.4 Proposition
Algorithm 1S-SATISFIABLE-CONSTRUCTORS is correct.

PROOF. Termination is obvious. Partial correctness follows by Propositions 5.3.2
and 5.3.3.



5.4.1

5.4.2

5.4.3

32 CHAPTER 5. LISTS

5.4 From lists to constructors

Algorithm (IS-SATISFIABLE-LISTS)
Input: A finite set I' of flat Xjisi-lists
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function 1S-SATISFIABLE-LISTS(I)

2: A « LISTS-TO-CONSTRUCTORS(I")

3: return IS-SATISFIABLE-CONSTRUCTORS(A)
4: end function

ot

: function LISTS-TO-CONSTRUCTORS(T")

6: X «— vars(T")
7: Replace each literal of the form e ~ car(z) in I' with the formula
x #nil — x =~ cons(e,y’),
where 3’ is a fresh free constant symbol of sort list.
8: Replace each literal of the form z ~ cdr(y) in T’ with the formula

y & nil — y =~ cons(e’,x),

where €’ is a fresh free constant symbol of sort elem.
9: return I’

10: end function

Proposition

In algorithm 1S-SATISFIABLE-LISTS, let A be the output returned by the call
to LISTS-TO-CONSTRUCTORS(T'). Then the following are equivalent:

1. T is Myst-satisfiable.
2. A is Mcons-satisfiable.

PROOF. (1 = 2). Immediate.
(1 = 2). Let B be an Mcons-interpretation over vars(A) satisfying A. Then

it is easy to check that I is satisfied by the M-interpretation A over X con-
structed by letting

Aelem = Belem )
Ajist = Biist ,
and
et =B for each e € Xejem ,
ot =23 for each = € Xjis; .
Proposition

Algorithm 1S-SATISFIABLE-LISTS is correct.

PrOOF. Termination is obvious. Partial correctness follows by Proposition 5.4.2.



