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5.1 Constructors

5.1.1 Definition
The SIGNATURE OF CONSTRUCTORS Ycons contains the following symbols:

e A sort elem for elements and a sort list for lists of elements.
e the constant symbol nil, of sort list;
e the function symbol cons, of arity elem x list — list.

5.1.2 Definition
A STANDARD cons-STRUCTURE A is a Yions-structure satisfying the following
conditions:

o Alist = (Aelem)*;
o il = ();

e cons(e, {e1,...,e,)) = {e,e1,...,e,), for each n > 0 and e, ey,...,e, €
Aelem-

5.1.3 Definition
The MODELCLASS OF CONSTRUCTORS is the pair Mcons = (Zcons; A ), where A is
the class of all Yons-structures that are isomorphic to standard cons-structures.
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5.2 Lists

Definition
The SIGNATURE OF LISTS Y5t extends the signature of constructors Ycons with
the function symbols:

e car, of arity list — elem;
e cdr, of arity list — list.

Definition
A STANDARD list-STRUCTURE A is a Yjg-structure satisfying the following con-
ditions:

o A¥ens ig a standard cons-structure;

e car’*({e1,...,e,)) = e1, for eachn > 0 and ey, ..., e, € Acem;
° cdrA(<el, coyen)) = {ea,... en), for each n >0 and ey, ..., e, € Acem-
Definition

The MODELCLASS OF LISTS is the pair Mjst = (Zjist, A), where A is the class of
all Yjist-structures that are isomorphic to standard list-structures.

5.3 From constructors to equality with acyclic-
ity test

Algorithm (1S-SATISFIABLE-CONSTRUCTORS)
Input: A finite set ' of flat Xons-literals
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function IS-SATISFIABLE-CONSTRUCTORS(T)
2: X «— vars(T)
3: For each literal of the form = = cons(e,y) in T', add to T the literals

e = car(x), y ~ cdr(z)
4: T « the set of terms occurring in I'
5: R — {(s,t) € T x T | the literal s ~ ¢ is in I'}
6: C «+ the congruence closure of R with respect to T’
7: Let < be the binary relation of Xt defined by letting z < y iff there
is a literal ¢’ ~ cons(e, z’) in I" such that (z,2') € C and (y,y') € C
8: if t#yisin I and (z,y) € C then
9: return unsatisfiable
10: else if = ~ nil and y = cons(e, z) are in I, and (z,y) € C then
11: return unsatisfiable
12: else if < is not acyclic then
13: return unsatisfiable

14: else
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15: return satisfiable
16: end if
17: end function

5.3.2 Proposition
If Algorithm 1S-SATISFIABLE-CONSTRUCTORS returns satisfiable then ' is
Meons-satisfiable.

PRrROOF. Assume without loss of generality that Xeem # @. T is clearly satisfied
by the M ons-interpretation A over X defined as follows. First, we let

Aelem - (Xelem/c) U {VO} .

where vy ¢ Xelem/C. Then, we let

et = le]o, for all elem-variables e € Xejem -
We also let
= (), if the literal x = nil is in T",
and
ot = (e oy, if the literal = ~ cons(e,y) isin T".

For all the other list-variables, we let
,TA:<VO>O"'O<I/O>
~—_————
h(z) times
where h : Xjis — N is an arbitrarily fixed injective function.

5.3.3 Proposition
If Algorithm 1S-SATISFIABLE-CONSTRUCTORS returns unsatisfiable then I' is
Meons-unsatisfiable.

PROOF. We prove the stronger fact that I" is M)s-unsatisfiable.

By contradiction, assume that I' is M-satisfiable. Then there exists an
Miist-interpretation A such that A = T'. Let R’ be the binary relation of T
defined by letting (s,t) € R’ iff s* = 4. Then C C R'.

If the algorithm ended at line 9, then (z,y) € C, which implies 24 = y
contradicting the fact that the literal z % y is in T.

If the algorithm ended at line 11, then (z,y) € C, which implies nil* =
[cons(e, 2)]*, a contradiction.

If the algorithm ended at line 13, then there is a cycle z1 < x93 <X -+ -z, =Xz,
implying that x7' = [cons(eq, x2)]*, 22 = [cons(eq, 13)]4, ..., 27t = [cons(e,, z1)]4,
a contradiction.

A

5.3.4 Proposition
Algorithm 1S-SATISFIABLE-CONSTRUCTORS is correct.

PROOF. Termination is obvious. Partial correctness follows by Propositions 5.3.2
and 5.3.3.
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5.4 From lists to constructors

Algorithm (IS-SATISFIABLE-LISTS)
Input: A finite set I' of flat Xjisi-lists
Output: satisfiable if I' is satisfiable; unsatisfiable otherwise

1: function 1S-SATISFIABLE-LISTS(I)

2: A « LISTS-TO-CONSTRUCTORS(I")

3: return IS-SATISFIABLE-CONSTRUCTORS(A)
4: end function

ot

: function LISTS-TO-CONSTRUCTORS(T")

6: X «— vars(T")
7: Replace each literal of the form e ~ car(z) in I' with the formula
x #nil — x =~ cons(e,y’),
where 3’ is a fresh free constant symbol of sort list.
8: Replace each literal of the form z ~ cdr(y) in T’ with the formula

y & nil — y =~ cons(e’,x),

where €’ is a fresh free constant symbol of sort elem.
9: return I’

10: end function

Proposition

In algorithm 1S-SATISFIABLE-LISTS, let A be the output returned by the call
to LISTS-TO-CONSTRUCTORS(T'). Then the following are equivalent:

1. T is Myst-satisfiable.
2. A is Mcons-satisfiable.

PROOF. (1 = 2). Immediate.
(1 = 2). Let B be an Mcons-interpretation over vars(A) satisfying A. Then

it is easy to check that I is satisfied by the M-interpretation A over X con-
structed by letting

Aelem = Belem )
Ajist = Biist ,
and
et =B for each e € Xejem ,
ot =23 for each = € Xjis; .
Proposition

Algorithm 1S-SATISFIABLE-LISTS is correct.

PrOOF. Termination is obvious. Partial correctness follows by Proposition 5.4.2.



