Chapter 6

Arrays

DECISION PROCEDURES

Last update of lecture notes: Tuesday, March 7, 2006 Last update of this chapter: Wednesday, February 22, 2006

6.1 The modelclass

6.1.1 Definition

The SIGNATURE OF ARRAYS Σ_{array} contains the following symbols:

- The sorts elem for elements, index for indices, and array for arrays.
- The function symbol read, of arity array \times index \rightarrow elem.
- The function symbol write, of arity array \times index \times elem \rightarrow array.

6.1.2 Definition

A STANDARD array-STRUCTURE is any Σ_{array} -structure \mathcal{A} satisfying the following properties:

- 1. $A_{\text{array}} = (A_{\text{elem}})^{A_{\text{index}}}$.
- 2. $\operatorname{read}^{\mathcal{A}}(a,i) = a(i)$, for all $a \in A_{\operatorname{array}}$ and $i \in A_{\operatorname{index}}$.
- 3. write $A(a, i, e) = a_{i \mapsto e}$, for all $a \in A_{\mathsf{array}}$, $i \in A_{\mathsf{index}}$, and $e \in A_{\mathsf{elem}}$.

6.1.3 Definition

The MODELCLASS OF ARRAYS is the pair $M_{\mathsf{array}} = (\Sigma_{\mathsf{array}}, \mathbf{A})$, where \mathbf{A} is the class of all Σ_{array} -structures that are isomorphic to standard array -structures.

6.2 Equality reduction

6.2.1 Algorithm (IS-SATISFIABLE-ARRAY)

Input: A finite set Γ of flat Σ_{array} -literals

Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

- 1: **function** IS-SATISFIABLE-SETS(Γ)
- 2: $\Delta \leftarrow \text{ARRAYS-TO-EQUALITY}(\Gamma)$
- 3: **return** IS-SATISFIABLE-EQUALITY(Δ)
- 4: end function
- 5: **function** ARRAYS-TO-EQUALITY(Γ)
- 6: $X \leftarrow vars(\Gamma)$
- 7: For each literal of the form $a \not\approx_{\mathsf{array}} b$ in Γ , generate a fresh index-variable $w_{a,b}$. Let W be the set of freshly generated variables.
- 8: Replace each formula of the form $a \not\approx_{\mathsf{array}} b$ in Γ with the formula

$$read(a, w_{a,b}) \not\approx read(b, w_{a,b})$$

9: Replace each formula of the form $a \approx \mathsf{write}(b, i, e)$ in Γ with the formula

$$\bigwedge_{j \in X_{\mathsf{index}} \cup W} if \ i \approx j \ then \ \mathsf{read}(a,j) \approx e \ else \ \mathsf{read}(a,j) \approx \mathsf{read}(b,j)$$

- 10: return Γ
- 11: end function

6.2.2 Proposition

In algorithm is-satisfiable-arrays, let Δ be the output returned by the call to arrays-to-equality (Γ). Then the following are equivalent:

- 1. Γ is M_{array} -satisfiable.
- 2. Δ is M_{\approx}^{Ω} -satisfiable, where $\Omega^{S}=\{\text{elem}, \text{index}, \text{array}\}, \ \Omega^{C}=\Omega^{F}=\{\text{read}\}, \ and \ \Omega^{P}=\varnothing$.

Proof. $(1 \implies 2)$. Immediate.

(1 \Longrightarrow 2). Let \mathcal{B} be an Ω -interpretation over $X \cup W$ satisfying Δ . Then it is easy to check that Γ is satisfied by the M_{array} -interpretation \mathcal{A} over X constructed as follows. We first let

$$A_{\text{elem}} = B_{\text{elem}} \,,$$

 $A_{\text{index}} = B_{\text{index}} \,,$

and

$$e^{\mathcal{A}} = e^{\mathcal{B}}$$
, for each $e \in X_{\mathsf{elem}}$, $i^{\mathcal{A}} = i^{\mathcal{B}}$, for each $i \in X_{\mathsf{index}}$.

Moreover, for each $a \in X_{\mathsf{array}}$ and $i \in A_{\mathsf{index}}$, we let

$$a^{\mathcal{A}}(i) = \begin{cases} \operatorname{read}^{\mathcal{B}}(a^{\mathcal{B}}, i) \,, & \text{if } i \in (X_{\operatorname{index}} \cup W)^{\mathcal{B}} \,, \\ e_0 \,, & \text{otherwise} \,, \end{cases}$$

where e_0 is an arbitrarily fixed element in $A_{\sf elem}$.

6.2.3 Proposition

 $Algorithm \ \ {\tt IS-SATISFIABLE-ARRAYS} \ \ is \ \ correct.$

Proof. Termination is obvious. Partial correctness follows by Proposition 6.2.2.