Chapter 7

Sets

Decision Procedures Last update of lecture notes: Tuesday, March 7, 2006 Last update of this chapter: Wednesday, February 22, 2006

7.1 The modelclass

7.1.1 Definition

The SIGNATURE OF SETS Σ_{set} contains the following symbols:

- $\bullet\,$ The sorts elem for elements and set for sets of elements.
- The constant symbol \emptyset (*empty set*), of sort set.
- The function symbol $\{\cdot\}$ (singleton set), of arity elem \rightarrow set.
- The function symbol \cup (*union*), of arity set \times set \rightarrow set.
- The function symbol \cap (*intersection*), of arity set \times set \rightarrow set.
- The function symbol \setminus (set difference), of arity set \times set \rightarrow set.
- The predicate symbol \in (*membership*), of arity elem \times set.

7.1.2 Definition

A STANDARD set-STRUCTURE is any Σ_{set} -structure \mathcal{A} satisfying the following properties:

- $1. \ A_{\mathsf{set}} = \mathcal{P}(A_{\mathsf{elem}}).$
- 2. the symbols \emptyset , $\{\cdot\}$, \cup , \cap , \setminus , \in , and \subseteq are interpreted according to their standard interpretation over sets of elements.

7.1.3 Definition

The MODELCLASS OF SETS is the pair $M_{set} = (\Sigma_{set}, \mathbf{A})$, where \mathbf{A} is the class of all Σ_{set} -structures that are isomorphic to standard set-structures.

7.2 Equality reduction

7.2.1 Algorithm (IS-SATISFIABLE-SETS)

Input: A finite set Γ of flat Σ_{set} -literals

Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

- 1: function IS-SATISFIABLE-SETS(Γ)
- 2: $\Delta \leftarrow \text{SETS-TO-EQUALITY}(\Gamma)$
- 3: **return** IS-SATISFIABLE-EQUALITY(Δ)

 $e \in$

4: end function

5: function SETS-TO-EQUALITY(Γ)

- 6: $X \leftarrow vars(\Gamma)$
- 7: For each literal of the form $x \not\approx_{set} y$ in Γ , generate a fresh elem-variable $w_{x,y}$. Let W be the set of freshly generated variables.
- 8: Replace each formula of the form $x \not\approx_{set} y$ in Γ with the formula

 $(w_{x,y} \in x \land w_{x,y} \notin y) \lor (w_{x,y} \notin x \land w_{x,y} \in y)$

9: Replace each formula of the form $x \approx \emptyset$ in Γ with the formula

$$\bigwedge_{\in X_{\mathsf{elem}} \cup W} e \notin x \,.$$

10: Replace each formula of the form $x \approx \{e_0\}$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathrm{elem}} \cup W} [e \in x \ \leftrightarrow \ e = e_0] \,,$$

11: Replace each formula of the form $x \approx y \cup z$ in Γ with the formula

$$\bigwedge_{X_{\mathsf{elem}} \cup W} [e \in x \ \leftrightarrow \ (e \in y \ \lor \ e \in z)] \, .$$

12: Replace each formula of the form $x \approx y \cap z$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} [e \in x \ \leftrightarrow \ (e \in y \ \land \ e \in z)] \, .$$

13: Replace each formula of the form $x \approx y \setminus z$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} [e \in x \ \leftrightarrow \ (e \in y \ \wedge \ e \notin z)] \, .$$

14: return Γ

15: end function

7.2.2 Proposition

In algorithm IS-SATISFIABLE-SETS, let Δ be the output returned by the call to SETS-TO-EQUALITY(Γ). Then the following are equivalent:

1. Γ is M_{set} -satisfiable.

2. Δ is M^{Ω}_{\approx} -satisfiable, where $\Omega^{S} = \{\text{elem}, \text{set}\}, \ \Omega^{C} = \Omega^{F} = \emptyset$, and $\Omega^{P} = \{\in\}$.

Proof. (1 \implies 2). Immediate.

 $(1 \implies 2)$. Let \mathcal{B} be an Ω -interpretation over $X \cup W$ satisfying Δ . Then it is easy to check that Γ is satisfied by the M_{set} -interpretation \mathcal{A} over X defined by letting

$$A_{\text{elem}} = B_{\text{elem}}$$
,

and

$$e^{\mathcal{A}} = e^{\mathcal{B}}, \qquad \text{for all } e \in X_{\text{elem}},$$
$$x^{\mathcal{A}} = \left\{ e \in (X_{\text{elem}} \cup W)^{\mathcal{A}} \mid (e, x^{\mathcal{B}}) \in (\in^{\mathcal{B}}) \right\}, \qquad \text{for all } x \in X_{\text{set}}.$$

7.2.3 Proposition

Algorithm IS-SATISFIABLE-SETS is correct.

PROOF. Termination is obvious. Partial correctness follows by Proposition 7.2.2.
