Chapter 7

Sets

Decision Procedures

Last update of lecture notes: Tuesday, March 7, 2006
Last update of this chapter: Wednesday, February 22, 2006

7.1 The modelclass

7.1.1 Definition

The signature of sets $\Sigma_{\text {set }}$ contains the following symbols:

- The sorts elem for elements and set for sets of elements.
- The constant symbol \varnothing (empty set), of sort set.
- The function symbol $\{\cdot\}$ (singleton set), of arity elem \rightarrow set.
- The function symbol \cup (union), of arity set \times set \rightarrow set.
- The function symbol \cap (intersection), of arity set \times set \rightarrow set.
- The function symbol \backslash (set difference), of arity set \times set \rightarrow set.
- The predicate symbol $\in($ membership $)$, of arity elem \times set.

7.1.2 Definition

A standard set-Structure is any $\Sigma_{\text {set }}$-structure \mathcal{A} satisfying the following properties:

1. $A_{\text {set }}=\mathcal{P}\left(A_{\text {elem }}\right)$.
2. the symbols $\varnothing,\{\cdot\}, \cup, \cap, \backslash, \in$, and \subseteq are interpreted according to their standard interpretation over sets of elements.

7.1.3 Definition

The modelclass of sets is the pair $M_{\text {set }}=\left(\Sigma_{\text {set }}, \mathbf{A}\right)$, where \mathbf{A} is the class of all $\Sigma_{\text {set }}$-Structures that are isomorphic to standard set-structures.

7.2 Equality reduction

7.2.1 Algorithm (IS-SATISFIABLE-SETS)

Input: A finite set Γ of flat $\Sigma_{\text {set }}$-literals
Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise
function IS-SATISFIABLE-SETS(Γ)
$\Delta \leftarrow \operatorname{SETS}-\mathrm{TO}-\mathrm{EQUALITY}(\Gamma)$
return IS-SATISFIABLE-EQUALITY (Δ)
end function
function SETS-TO-EQUALITY (Γ)
$X \leftarrow \operatorname{vars}(\Gamma)$
For each literal of the form $x \not \chi_{\text {set }} y$ in Γ, generate a fresh elem-variable $w_{x, y}$. Let W be the set of freshly generated variables.
Replace each formula of the form $x \not \nsim$ set y in Γ with the formula

$$
\left(w_{x, y} \in x \wedge w_{x, y} \notin y\right) \vee\left(w_{x, y} \notin x \wedge w_{x, y} \in y\right)
$$

9: \quad Replace each formula of the form $x \approx \varnothing$ in Γ with the formula

$$
\bigwedge_{e \in X_{\text {elem }} \cup W} e \notin x
$$

Replace each formula of the form $x \approx\left\{e_{0}\right\}$ in Γ with the formula

$$
\bigwedge_{e \in X_{\mathrm{elem}} \cup W}\left[e \in x \leftrightarrow e=e_{0}\right],
$$

Replace each formula of the form $x \approx y \cup z$ in Γ with the formula

$$
\bigwedge_{e \in X_{\text {elem }} \cup W}[e \in x \leftrightarrow(e \in y \vee e \in z)] .
$$ Replace each formula of the form $x \approx y \cap z$ in Γ with the formula

$$
\bigwedge_{e \in X_{\text {elem }} \cup W}[e \in x \leftrightarrow(e \in y \wedge e \in z)] .
$$

Replace each formula of the form $x \approx y \backslash z$ in Γ with the formula

$$
\bigwedge_{e \in X_{\mathrm{elem}} \cup W}[e \in x \leftrightarrow(e \in y \wedge e \notin z)] .
$$

return Γ
end function

7.2.2 Proposition

In algorithm IS-SATISFIABLE-SETS, let Δ be the output returned by the call to SETS-TO-EQUALITY (Γ). Then the following are equivalent:

1. Γ is $M_{\text {set }}$-satisfiable.
2. Δ is M_{\approx}^{Ω}-satisfiable, where $\Omega^{\mathrm{S}}=\{$ elem, set $\}, \Omega^{\mathrm{C}}=\Omega^{\mathrm{F}}=\varnothing$, and $\Omega^{\mathrm{P}}=$ $\{\in\}$.

Proof. $(1 \Longrightarrow 2)$. Immediate.
$(1 \Longrightarrow 2)$. Let \mathcal{B} be an Ω-interpretation over $X \cup W$ satisfying Δ. Then it is easy to check that Γ is satisfied by the $M_{\text {set }}$-interpretation \mathcal{A} over X defined by letting

$$
A_{\text {elem }}=B_{\text {elem }}
$$

and

$$
\begin{array}{ll}
e^{\mathcal{A}}=e^{\mathcal{B}}, & \text { for all } e \in X_{\text {elem }} \\
x^{\mathcal{A}}=\left\{e \in\left(X_{\text {elem }} \cup W\right)^{\mathcal{A}} \mid\left(e, x^{\mathcal{B}}\right) \in\left(\in^{\mathcal{B}}\right)\right\}, & \text { for all } x \in X_{\text {set }}
\end{array}
$$

7.2.3 Proposition

Algorithm IS-SATISFIABLE-SETS is correct.
Proof. Termination is obvious. Partial correctness follows by Proposition 7.2.2.

