Chapter 8

Multisets

DECISION PROCEDURES

Last update of Lecture Notes: Tuesday, March 7, 2006 Last update of this chapter: Tuesday, February 28, 2006

8.1 The modelclass

8.1.1 Definition

The SIGNATURE OF MULTISETS Σ_{bag} extends the signature Σ_{int} of integers with the following symbols:

- The sorts elem for elements and bag for multisets of elements.
- The constant symbol [] (empty bag), of sort bag.
- The function symbol $\llbracket \cdot \rrbracket^{(\cdot)}$ (singleton multiset), of arity elem \times int \rightarrow bag.
- The function symbol \cup (multiset union), of arity bag \times bag \rightarrow bag.
- The function symbol \uplus (multiset sum), of arity bag \times bag \to bag.
- The function symbol \cap (multiset intersection), of arity bag \times bag \rightarrow bag.
- The function symbol count (*counting*), of arity bag \times elem \rightarrow int.

8.1.2 Definition

A STANDARD bag-STRUCTURE is any Σ_{bag} -structure \mathcal{A} satisfying the following properties:

- 1. $\mathcal{A}^{\Sigma_{\text{int}}}$ is the standard int-structure.
- 2. $A_{\mathsf{bag}} = \mathbb{N}^{A_{\mathsf{elem}}}$.
- 3. the symbols $[], [\cdot]^{(\cdot)}, \cup, \uplus$, and \cap are interpreted according to their standard interpretation over multisets of elements.

4. count^A(e, x) = x(e), for all $e \in A_{elem}$ and $x \in A_{bag}$.

8.1.3 Definition

The MODELCLASS OF MULTISETS is the pair $M_{\text{bag}} = (\Sigma_{\text{bag}}, \mathbf{A})$, where \mathbf{A} is the class of all Σ_{bag} -structures that are isomorphic to standard bag-structures.

8.2 Integer reduction

8.2.1 Algorithm (IS-SATISFIABLE-MULTISETS)

Input: A finite set Γ of flat Σ_{bag} -literals

Output: satisfiable if Γ is satisfiable; unsatisfiable otherwise

- 1: **function** IS-SATISFIABLE-SETS(Γ)
- 2: $\Delta \leftarrow \text{MULTISETS-TO-INTEGERS}(\Gamma)$
- 3: **return** IS-SATISFIABLE-INTEGERS(Δ)
- 4: end function
- 5: function MULTISETS-TO-INTEGERS(Γ)
- 6: $X \leftarrow vars(\Gamma)$
- 7: For each literal of the form $x \not\approx_{\mathsf{bag}} y$ in Γ , generate a fresh elemvariable $w_{x,y}$. Let W be the set of freshly generated variables.
- 8: Replace each literal of the form $x \not\approx_{\mathsf{bag}} y$ in Γ with the formula

$$count(w_{x,y},x) \not\approx count(w_{x,y},y)$$
.

9: Replace each formula of the form $x \approx [\![\,]\!]$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} \mathsf{count}(e,x) \approx 0 \,.$$

10: Replace each formula of the form $x \approx [e_0]^{(u)}$ in Γ with the formula

$$\bigwedge_{e \in V_{\text{stem}} \cup W} \left[if \ e \approx e_0 \ then \ \mathsf{count}(e,x) \approx \mathsf{max}(0,u) \ else \ \mathsf{count}(e,x) \approx 0 \right].$$

11: Replace each formula of the form $x \approx y \cup z$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} \left[\mathsf{count}(e, x) \approx \mathsf{max}(\mathsf{count}(e, y), \mathsf{count}(e, z)) \right].$$

12: Replace each formula of the form $x \approx y \uplus z$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} \left[\mathsf{count}(e, x) \approx \mathsf{count}(e, y) + \mathsf{count}(e, z)) \right].$$

13: Replace each formula of the form $x \approx y \cap z$ in Γ with the formula

$$\bigwedge_{e \in X_{\mathsf{elem}} \cup W} [\mathsf{count}(e,x) \approx \mathsf{min}(\mathsf{count}(e,y),\mathsf{count}(e,z))] \,.$$

- 14: return Γ
- 15: end function

8.2.2 Proposition

In algorithm is-satisfiable-multisets, let Δ be the output returned by the call to multisets-to-integers (Γ) . Then the following are equivalent:

- 1. Γ is M_{bag} -satisfiable.
- 2. Δ is $M_{\rm int} \oplus M_{\approx}^{\Omega}$ -satisfiable, where $\Omega^{\rm S} = \{ {\rm int, elem, bag} \}$, $\Omega^{\rm C} = \varnothing$, $\Omega^{\rm F} = \{ {\rm count} \}$, and $\Omega^{\rm P} = \varnothing$.

PROOF. $(1 \implies 2)$. Immediate.

 $(1 \implies 2)$. Let \mathcal{B} be an $M_{\mathsf{int}} \oplus M_{\approx}^{\Omega}$ -interpretation over $X \cup W$ satisfying Δ . Then it is easy to check that Γ is satisfied by the M_{bag} -interpretation \mathcal{A} over X defined by letting

$$A_{\mathsf{elem}} = B_{\mathsf{elem}}$$
,

and

$$e^{\mathcal{A}} = e^{\mathcal{B}}$$
, for all $e \in X_{\mathsf{elem}}$, $u^{\mathcal{A}} = u^{\mathcal{B}}$, for all $u \in X_{\mathsf{int}}$.

Moreover, for each $a \in X_{\mathsf{bag}}$ and $e \in A_{\mathsf{elem}}$, we let

$$a^{\mathcal{A}}(e) = \begin{cases} \mathsf{count}^{\mathcal{B}}(e, a^{\mathcal{B}}) \,, & \text{if } e \in (X_{\mathsf{elem}} \cup W)^{\mathcal{B}} \,, \\ 0 \,, \text{otherwise} \,. \end{cases}$$

8.2.3 Proposition

Algorithm is-satisfiable-multisets is correct.

PROOF. Termination is obvious. Partial correctness follows by Proposition 8.2.2.