Chapter 9

Combination

DECISION PROCEDURES

LAST UPDATE OF LECTURE NOTES: TUESDAY, MARCH 7, 2006 LAST UPDATE OF THIS CHAPTER: TUESDAY, MARCH 7, 2006.

9.1 Combination Theorem

9.1.1 Definition

Let $M_i = (\Sigma_i, \mathbf{A}_i)$ be a modelclass, for i = 1, 2. The COMBINATION of M_1 and M_2 is the modelclass $M_1 \oplus M_2 = (\Sigma, \mathbf{A})$ where $\Sigma = \Sigma_1 \cup \Sigma_2$ and $\mathbf{A} = \{\mathcal{A} \mid \mathcal{A}^{\Sigma_1} \in \mathbf{A}_1 \text{ and } \mathcal{A}^{\Sigma_2} \in \mathbf{A}_2\}.$

9.1.2 Proposition

Let M be a Σ -modelclass, let A and \mathcal{B} be Σ -interpretations over X, and let φ be a Σ -formula such that $vars(\varphi) \subseteq X$. Assume that $A \cong \mathcal{B}$. Then

$$\mathcal{A}\models_M \varphi \qquad \iff \qquad \mathcal{B}\models_M \varphi.$$

PROOF. Immediate.

9.1.3 Proposition

For i = 1, 2, let M_i be a Σ_i -modelclass, let φ_i be a Σ_i -formula, and let $X_i = vars(\varphi_i)$. Also, let $\Sigma_0 = \Sigma_1 \cap \Sigma_2$ and $X_0 = X_1 \cap X_2$. Assume that there exist a Σ_1 -interpretation \mathcal{A} over X_1 , and a Σ_2 -interpretation \mathcal{B} over X_2 such that:

$$\mathcal{A} \models_{M_1} \varphi_1 ,$$
$$\mathcal{B} \models_{M_2} \varphi_2 ,$$
$$\mathcal{A}^{\Sigma_0, X_0} \cong \mathcal{B}^{\Sigma_0, X_0} .$$

Then there exists a $(\Sigma_1 \cup \Sigma_2)$ -interpretation \mathfrak{F} over $X_1 \cup X_2$ such that:

$$\mathcal{F} \models_{M_1 \oplus M_2} \varphi_1 \land \varphi_2$$
$$\mathcal{F}^{\Sigma_1, X_1} \cong \mathcal{A} ,$$
$$\mathcal{F}^{\Sigma_2, X_2} \cong \mathcal{B} .$$

PROOF. Let h be an isomorphism of $\mathcal{A}^{\Sigma_0, X_0}$ into $\mathcal{B}^{\Sigma_0, X_0}$. By Proposition 9.1.2, we can assume without loss of generality that $\mathcal{A}^{\Sigma_0, X_0} = \mathcal{B}^{\Sigma_0, X_0}$. In particular, this implies that $A_{\sigma} = B_{\sigma}$, for all $\sigma \in \Sigma_0$.

We define a $(\Sigma_1 \cup \Sigma_2)$ -interpretation \mathcal{F} over $X_1 \cup X_2$ by letting:

$$F_{\sigma} = \begin{cases} A_{\sigma} , & \text{if } \sigma \in \Sigma_{1}^{\mathrm{S}} , \\ B_{\sigma} , & \text{if } \sigma \in \Sigma_{2}^{\mathrm{S}} \setminus \Sigma_{1}^{\mathrm{S}} , \end{cases}$$

and:

• for variables:

$$u^{\mathcal{F}} = \begin{cases} u^{\mathcal{A}} , & \text{if } u \in X_1 , \\ u^{\mathcal{B}} , & \text{if } u \in X_2 \setminus X_1 , \end{cases}$$

• for constant symbols:

$$c^{\mathcal{F}} = \begin{cases} c^{\mathcal{A}} , & \text{if } c \in \Sigma_{1}^{\mathcal{C}} , \\ c^{\mathcal{B}} , & \text{if } c \in \Sigma_{2}^{\mathcal{C}} \setminus \Sigma_{1}^{\mathcal{C}} , \end{cases}$$

• for function symbols:

$$f^{\mathcal{F}} = \begin{cases} f^{\mathcal{A}} , & \text{if } f \in \Sigma_{1}^{\mathcal{F}} , \\ f^{\mathcal{B}} , & \text{if } f \in \Sigma_{2}^{\mathcal{F}} \setminus \Sigma_{1}^{\mathcal{F}} \end{cases}$$

• for predicate symbols:

$$p^{\mathcal{F}} = \begin{cases} p^{\mathcal{A}} , & \text{if } p \in \Sigma_1^{\mathcal{P}} , \\ p^{\mathcal{B}} , & \text{if } p \in \Sigma_2^{\mathcal{P}} \setminus \Sigma_1^{\mathcal{P}} \end{cases}$$

By construction, $\mathfrak{F}^{\Sigma_1,X_1} \cong \mathcal{A}$ and $\mathfrak{F}^{\Sigma_2,X_2} \cong \mathcal{B}$. Thus, by Proposition 9.1.2, $\mathfrak{F}\models_{M_1\oplus M_2} \varphi_1 \wedge \varphi_2$.

9.1.4 Proposition

For i = 1, 2, let M_i be a Σ_i -modelclass, let φ_i be a Σ_i -formula, and let $X_i = vars(\varphi_i)$. Assume that $\Sigma_1^{C} \cap \Sigma_2^{C} = \Sigma_1^{F} \cap \Sigma_2^{F} = \Sigma_1^{P} \cap \Sigma_2^{P} = \emptyset$. Finally, assume that there exist a Σ_1 -interpretation \mathcal{A} over X_1 and a Σ_2 -interpretation \mathcal{B} over X_2 such that:

• $\mathcal{A} \models_{M_1} \varphi_1;$

- $\mathfrak{B}\models_{M_2}\varphi_2;$
- $|A_{\sigma}| = |B_{\sigma}|$, for all sorts $\sigma \in \Sigma_1^{\mathrm{S}} \cap \Sigma_2^{\mathrm{S}}$;
- $x^{\mathcal{A}} = y^{\mathcal{A}}$ iff $x^{\mathcal{B}} = y^{\mathcal{B}}$, for all variables $x, y \in X_1 \cap X_2$ of the same sort.

Then there exists a $(\Sigma_1 \cup \Sigma_2)$ -interpretation \mathcal{F} over $X_1 \cup X_2$ such that $\mathcal{F} \models_{M_1 \oplus M_2} \varphi_1 \land \varphi_2$.

PROOF. Let $X = X_1 \cap X_2$. For each sort $\sigma \in \Sigma_1^{\mathrm{S}} \cap \Sigma_2^{\mathrm{S}}$, define a function $h_{\sigma} : X_{\sigma}^{\mathcal{A}} \to X_{\sigma}^{\mathcal{B}}$ by letting $h_{\sigma}(x^{\mathcal{A}}) = x^{\mathcal{B}}$, for all variables $x \in X_{\sigma}$. By construction, h_{σ} is bijective. It follows that $|X_{\sigma}^{\mathcal{A}}| = |X_{\sigma}^{\mathcal{B}}|$. We can therefore extend h_{σ} to a bijective function $h'_{\sigma} : A_{\sigma} \to B_{\sigma}$. Thus, we have found a family of bijective functions

$$h = \left\{ h_{\sigma} : A_{\sigma} \to B_{\sigma} \mid \sigma \in \Sigma_{1}^{\mathrm{S}} \cap \Sigma_{2}^{\mathrm{S}} \right\}$$

Clearly, h is an isomorphism of $\mathcal{A}^{\Sigma_1 \cap \Sigma_2, X}$ into $\mathcal{B}^{\Sigma_1 \cap \Sigma_2, X}$. By Proposition 9.1.3, there exists a $(\Sigma_1 \cup \Sigma_2)$ -interpretation \mathcal{F} over $X_1 \cup X_2$ such that $\mathcal{F} \models_{M_1 \oplus M_2} \varphi_1 \land \varphi_2$.

9.2 Nelson-Oppen

9.2.1 Definition

A Σ -modelclass M is STABLY INFINITE provided that every quantifier-free Σ formula φ is M-satisfiable if and only if there exists a Σ -interpretation \mathcal{A} over $vars(\varphi)$ such that $\mathcal{A} \models_M \varphi$ and A_{σ} is countably infinite, for every $\sigma \in \Sigma^{\mathrm{S}}$.

9.2.2 Definition

Let X be a set of variables, and let E be a well-sorted equivalence relation of X. The ARRANGEMENT of X with respect to E is the set of literals

$$arr(E, X) = \{x \approx y \mid (x, y) \in E\}$$
$$\{x \not\approx y \mid (x, y) \notin E\}$$

9.2.3 Algorithm (NELSON-OPPEN)

Input: For $i = 1, 2, M_i$ is a stably infinite Σ_i -modelclass with a decidable quantifier-free satisfiability problem. The algorithm takes in input a finite set Γ of $(\Sigma_1 \cup \Sigma_2)$ -literals

Output: satisfiable, if Γ is $(M_1 \oplus M_2)$ -satisfiable; unsatisfiable otherwise

1: function NELSON-OPPEN(Γ)

2: By opportunely introducing fresh variables, obtain a finite set

 $\Gamma_1 \cup \Gamma_2$

of literals, where Γ_i contains only Σ_i -literals, and such that Γ and $\Gamma_1 \cup \Gamma_2$ are $(M_1 \oplus M_2)$ -equisatisfiable

3:	$X \leftarrow$	vars($(\Gamma_1) \cap$	vars	(Γ_2)	
----	----------------	-------	-------------------	------	--------------	--

- 4: for all well-sorted equivalence relations E of X do
 - if $\Gamma_1 \cup arr(X, E)$ is M_1 -unsatisfiable then
- 6: return unsatisfiable
- 7: else if $\Gamma_2 \cup arr(X, E)$ is M_2 -unsatisfiable then
 - ${f return}$ unsatisfiable
- 9: else
- 10: return satisfiable
- 11: end if
- 12: **end for**
- 13: end function

9.2.4 Proposition

If Algorithm NELSON-OPPEN returns unsatisfiable then Γ is $(M_1 \oplus M_2)$ -unsatisfiable.

PROOF. By contradiction, assume that Γ is $(M_1 \oplus M_2)$ -satisfiable. Then $\Gamma_1 \cup \Gamma_2$ is $(M_1 \oplus M_2)$ -satisfiable. Let \mathcal{F} be a $(\Sigma_1 \cup \Sigma_2)$ -interpretation such that $\mathcal{F} \models_{M_1 \oplus M_2} \Gamma_1 \cup \Gamma_2$. Moreover, let E be the equivalence relation of X defined by $(x, y) \in E$ iff the variables x, y have the same sort and $x^{\mathcal{A}} = y^{\mathcal{A}}$. By construction, $\mathcal{F} \models \Gamma_1 \cup arr(X, E)$ and $\mathcal{F} \models \Gamma_2 \cup arr(X, E)$. This contradicts the fact that the algorithm returned unsatisfiable.

9.2.5 Proposition

If Algorithm NELSON-OPPEN returns satisfiable then Γ is $(M_1 \oplus M_2)$ satisfiable.

PROOF. We know that, for i = 1, 2, $\Gamma_i \cup arr(X, E)$ is M_i -satisfiable. Since M_1 and M_2 are stably infinite, there exist a Σ_1 -interpretation \mathcal{A} and a Σ_2 -interpretation \mathcal{B} such that

- $\mathcal{A} \models_{M_1} \Gamma_1 \cup arr(X, E);$
- $\mathcal{B} \models_{M_2} \Gamma_2 \cup arr(X, E);$
- A_{σ} is countably infinite, for all sorts $\sigma \in \Sigma_1^{\mathrm{S}}$;
- B_{σ} is countably infinite, for all sorts $\sigma \in \Sigma_2^{\mathrm{S}}$.

Moreover, we have $x^{\mathcal{A}} = y^{\mathcal{A}}$ iff $x^{\mathcal{B}} = y^{\mathcal{B}}$, for all variables $x, y \in X$ of the same sort. Thus, by Proposition 9.1.4, there exists a $(\Sigma_1 \cup \Sigma_2)$ -interpretation \mathcal{F} such that $\mathcal{F} \models_{M_1 \oplus M_2} \Gamma_1 \cup \Gamma_2 \cup arr(X, E)$. It follows that $\Gamma_1 \cup \Gamma_2$ is $(M_1 \cup M_2)$ -satisfiable, and therefore also Γ is is $(M_1 \cup M_2)$ -satisfiable.

9.2.6 Proposition

Algorithm NELSON-OPPEN is correct.

PROOF. Termination is obvious. Partial correctness follows by Propositions 9.2.4 and 9.2.5.

5:

8: