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9.1 Combination Theorem

9.1.1 Definition
Let Mi = (Σi,Ai) be a modelclass, for i = 1, 2. The combination of M1

and M2 is the modelclass M1 ⊕M2 = (Σ,A) where Σ = Σ1 ∪ Σ2 and A =
{

A | AΣ1 ∈ A1 and AΣ2 ∈ A2

}

.

9.1.2 Proposition
Let M be a Σ-modelclass, let A and B be Σ-interpretations over X, and let ϕ
be a Σ-formula such that vars(ϕ) ⊆ X. Assume that A ∼= B. Then

A |=M ϕ ⇐⇒ B |=M ϕ .

Proof. Immediate.

9.1.3 Proposition
For i = 1, 2, let Mi be a Σi-modelclass, let ϕi be a Σi-formula, and let Xi =
vars(ϕi). Also, let Σ0 = Σ1 ∩Σ2 and X0 = X1 ∩X2. Assume that there exist a

Σ1-interpretation A over X1, and a Σ2-interpretation B over X2 such that:

A |=M1
ϕ1 ,

B |=M2
ϕ2 ,

A
Σ0,X0 ∼= B

Σ0,X0 .
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Then there exists a (Σ1 ∪Σ2)-interpretation F over X1 ∪X2 such that:

F |=M1⊕M2
ϕ1 ∧ ϕ2 ,

F
Σ1,X1 ∼= A ,

F
Σ2,X2 ∼= B .

Proof. Let h be an isomorphism of AΣ0,X0 into BΣ0,X0 . By Proposition 9.1.2,
we can assume without loss of generality that AΣ0,X0 = BΣ0,X0 . In particular,
this implies that Aσ = Bσ, for all σ ∈ Σ0.

We define a (Σ1 ∪ Σ2)-interpretation F over X1 ∪X2 by letting:

Fσ =

{

Aσ , if σ ∈ ΣS
1 ,

Bσ , if σ ∈ ΣS
2 \ ΣS

1 ,

and:

• for variables:

uF =

{

uA , if u ∈ X1 ,

uB , if u ∈ X2 \X1 ,

• for constant symbols:

cF =

{

cA , if c ∈ ΣC
1 ,

cB , if c ∈ ΣC
2 \ ΣC

1 ,

• for function symbols:

fF =

{

fA , if f ∈ ΣF
1 ,

fB , if f ∈ ΣF
2 \ ΣF

1 ,

• for predicate symbols:

pF =

{

pA , if p ∈ ΣP
1 ,

pB , if p ∈ ΣP
2 \ ΣP

1 .

By construction, FΣ1,X1 ∼= A and FΣ2,X2 ∼= B. Thus, by Proposition 9.1.2,
F |=M1⊕M2

ϕ1 ∧ ϕ2.

9.1.4 Proposition
For i = 1, 2, let Mi be a Σi-modelclass, let ϕi be a Σi-formula, and let Xi =

vars(ϕi). Assume that ΣC
1 ∩ ΣC

2 = ΣF
1 ∩ ΣF

2 = ΣP
1 ∩ ΣP

2 = ∅. Finally, assume

that there exist a Σ1-interpretation A over X1 and a Σ2-interpretation B over

X2 such that:

• A |=M1
ϕ1;
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• B |=M2
ϕ2;

• |Aσ| = |Bσ|, for all sorts σ ∈ ΣS
1 ∩ ΣS

2 ;

• xA = yA iff xB = yB, for all variables x, y ∈ X1 ∩X2 of the same sort.

Then there exists a (Σ1∪Σ2)-interpretation F over X1∪X2 such that F |=M1⊕M2

ϕ1 ∧ ϕ2.

Proof. Let X = X1 ∩ X2. For each sort σ ∈ ΣS
1 ∩ ΣS

2 , define a function hσ :
XA

σ → XB
σ by letting hσ(xA) = xB, for all variables x ∈ Xσ. By construction,

hσ is bijective. It follows that |XA
σ | = |XB

σ |. We can therefore extend hσ to
a bijective function h′

σ : Aσ → Bσ. Thus, we have found a family of bijective
functions

h =
{

hσ : Aσ → Bσ | σ ∈ ΣS

1 ∩ ΣS

2

}

.

Clearly, h is an isomorphism of AΣ1∩Σ2,X into BΣ1∩Σ2,X . By Proposition 9.1.3,
there exists a (Σ1 ∪ Σ2)-interpretation F over X1 ∪ X2 such that F |=M1⊕M2

ϕ1 ∧ ϕ2.

9.2 Nelson-Oppen

9.2.1 Definition
A Σ-modelclass M is stably infinite provided that every quantifier-free Σ-
formula ϕ is M -satisfiable if and only if there exists a Σ-interpretation A over
vars(ϕ) such that A |=M ϕ and Aσ is countably infinite, for every σ ∈ ΣS.

9.2.2 Definition
Let X be a set of variables, and let E be a well-sorted equivalence relation of
X . The arrangement of X with respect to E is the set of literals

arr (E, X) = {x ≈ y | (x, y) ∈ E}

{x 6≈ y | (x, y) /∈ E}

9.2.3 Algorithm (nelson-oppen)
Input: For i = 1, 2, Mi is a stably infinite Σi-modelclass with a decidable

quantifier-free satisfiability problem. The algorithm takes in input a finite
set Γ of (Σ1 ∪ Σ2)-literals

Output: satisfiable, if Γ is (M1⊕M2)-satisfiable; unsatisfiable otherwise

1: function nelson-oppen(Γ)
2: By opportunely introducing fresh variables, obtain a finite set

Γ1 ∪ Γ2

of literals, where Γi contains only Σi-literals, and such that Γ and
Γ1 ∪ Γ2 are (M1 ⊕M2)-equisatisfiable
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3: X ← vars(Γ1) ∩ vars(Γ2)
4: for all well-sorted equivalence relations E of X do
5: if Γ1 ∪ arr(X, E) is M1-unsatisfiable then
6: return unsatisfiable

7: else if Γ2 ∪ arr (X, E) is M2-unsatisfiable then
8: return unsatisfiable

9: else
10: return satisfiable

11: end if
12: end for
13: end function

9.2.4 Proposition
If Algorithm nelson-oppen returns unsatisfiable then Γ is (M1 ⊕ M2)-
unsatisfiable.

Proof. By contradiction, assume that Γ is (M1⊕M2)-satisfiable. Then Γ1∪Γ2

is (M1⊕M2)-satisfiable. Let F be a (Σ1∪Σ2)-intepretation such that F |=M1⊕M2

Γ1 ∪ Γ2. Moreover, let E be the equivalence relation of X defined by (x, y) ∈ E
iff the variables x, y have the same sort and xA = yA. By construction, F |=
Γ1 ∪ arr(X, E) and F |= Γ2 ∪ arr(X, E). This contradicts the fact that the
algorithm returned unsatisfiable.

9.2.5 Proposition
If Algorithm nelson-oppen returns satisfiable then Γ is (M1⊕M2)satisfiable.

Proof. We know that, for i = 1, 2, Γi ∪ arr(X, E) is Mi-satisfiable. Since
M1 and M2 are stably infinite, there exist a Σ1-interpretation A and a Σ2-
interpretation B such that

• A |=M1
Γ1 ∪ arr(X, E);

• B |=M2
Γ2 ∪ arr(X, E);

• Aσ is countably infinite, for all sorts σ ∈ ΣS
1 ;

• Bσ is countably infinite, for all sorts σ ∈ ΣS
2 .

Moreover, we have xA = yA iff xB = yB, for all variables x, y ∈ X of the same
sort. Thus, by Proposition 9.1.4, there exists a (Σ1 ∪Σ2)-interpretation F such
that F |=M1⊕M2

Γ1 ∪ Γ2 ∪ arr (X, E). It follows that Γ1 ∪ Γ2 is (M1 ∪M2)-
satisfiable, and therefore also Γ is is (M1 ∪M2)-satisfiable.

9.2.6 Proposition
Algorithm nelson-oppen is correct.

Proof. Termination is obvious. Partial correctness follows by Propositions 9.2.4
and 9.2.5.


