9.1.1

9.1.2

9.1.3

Chapter 9

Combination

DEcisioN PROCEDURES
LAST UPDATE OF LECTURE NOTES: TUESDAY, MARCH 7, 2006
LAST UPDATE OF THIS CHAPTER: TUESDAY, MARCH 7, 2006.

9.1 Combination Theorem

Definition

Let M; = (3;,A;) be a modelclass, for i = 1,2. The COMBINATION of M;
and My is the modelclass My & My = (X, A) where ¥ = ¥; UXs and A =
{.A | A* e A, and A>2 € Ag}

Proposition
Let M be a X-modelclass, let A and B be Y-interpretations over X, and let ¢
be a B-formula such that vars(e) C X. Assume that A = B. Then

A ':]W © < B ):M ©.
ProoF. Immediate.

Proposition

Fori=1,2, let M; be a X;-modelclass, let p; be a ¥;-formula, and let X; =
vars(p;). Also, let ¥g = X1 Ny and Xo = X1 N Xa. Assume that there exist a
Y1 -interpretation A over X1, and a Yo-interpretation B over Xo such that:

A ):M1 @1,

B Ewm, p2,
AEO-,XO o~ BEO-,XO )
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Then there exists a (31 U Xa)-interpretation F over X1 U Xa such that:
T Emenm, 01 N2,
FEeX = 4

g = B

PROOF. Let h be an isomorphism of A*0:Xo into B>0:Xo, By Proposition 9.1.2,
we can assume without loss of generality that A>0-Xo = B¥0:Xo  In particular,
this implies that A, = B,, for all o € .

We define a (X7 U Xp)-interpretation F over Xy U Xo by letting:

Ay, ifoeX},
Fa: .
B, , 1fU€E§\E§,
and:

e for variables:
F utt s if u e Xy ,
uB, ifue Xo\ Xy,

e for constant symbols:

T ct, ifcex?,
c®, ifcexf\ 2P,

e for function symbols:

it fexy,
f2, it fexf\ET,

e for predicate symbols:

7 pt, ifpext,
p?, ifpeXf\xy.

By construction, X1 = A and F¥2X2 =~ B. Thus, by Proposition 9.1.2,
T Ermer, 01 A p2.

9.1.4 Proposition

For i = 1,2, let M; be a ¥;-modelclass, let p; be a ¥;-formula, and let X; =
vars(pi). Assume that B¢ NXS = XNy = 2P N¥Y = @, Finally, assume
that there exist a Yq-interpretation A over X1 and a ¥o-interpretation B over
Xo such that:

o A ':Ml P15
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e B ):Mz P25
o |A,| = |B,|, for all sorts o € 5 N X3;
o 2t =yt iff 2 = 4B, for all variables x,y € X1 N Xo of the same sort.

Then there exists a (X1UX9)-interpretation F over X1UXs such that F Enr, g,
p1 A\ p2.

PrOOF. Let X = X; N X5. For each sort o € E% N Eg, define a function h, :
XA — X2 by letting h, (%) = 22, for all variables z € X,,. By construction,
ho is bijective. It follows that |XA| = |X2|. We can therefore extend h, to
a bijective function b : A, — B,. Thus, we have found a family of bijective
functions

h={hy: Ay — B, |c € £ N5} .

Clearly, h is an isomorphism of A>1M*2:X into B¥17*2:X By Proposition 9.1.3,
there exists a (X7 U Xg)-interpretation F over X; U X5 such that F Ea g,
©1 N\ p2.

9.2 Nelson-Oppen

Definition

A Y-modelclass M is STABLY INFINITE provided that every quantifier-free -
formula ¢ is M-satisfiable if and only if there exists a X-interpretation A over
vars(yp) such that A =y ¢ and A, is countably infinite, for every o € X5.

Definition
Let X be a set of variables, and let E be a well-sorted equivalence relation of
X. The ARRANGEMENT of X with respect to FE is the set of literals

arr(E, X)={z~y| (z,y) € E}
{z#y]|(z,y) ¢ E}

Algorithm (NELSON-OPPEN)

Input: For ¢ = 1,2, M; is a stably infinite X;-modelclass with a decidable
quantifier-free satisfiability problem. The algorithm takes in input a finite
set T of (X1 U Xy)-literals

Output: satisfiable,if I' is (M; ® Ms)-satisfiable; unsatisfiable otherwise

1: function NELSON-OPPEN(I)
2: By opportunely introducing fresh variables, obtain a finite set

I'huls

of literals, where I'; contains only ¥;-literals, and such that I" and
'y UTy are (M & Ms)-equisatisfiable
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3: X — vars(T'y) Nwars(T2)
4: for all well-sorted equivalence relations E of X do
5: if I’y U arr(X, F) is My-unsatisfiable then
6: return unsatisfiable
7: else if T'y U arr(X, E) is Ma-unsatisfiable then
8: return unsatisfiable
9: else
10: return satisfiable
11: end if
12: end for
13: end function
Proposition

If Algorithm NELSON-OPPEN returns unsatisfiable then I' is (My @ Ma)-
unsatisfiable.

PROOF. By contradiction, assume that I is (M7 ® Ms)-satisfiable. Then I'y UT'y
is (M1 Ms)-satisfiable. Let F be a (X1 UX5)-intepretation such that F =, ¢,
I’y UT,. Moreover, let E be the equivalence relation of X defined by (z,y) € E
iff the variables x,y have the same sort and ** = y*. By construction, F =
I'MUarr(X,E) and F |= T'y U arr(X, E). This contradicts the fact that the
algorithm returned unsatisfiable.

Proposition
If Algorithm NELSON-OPPEN returns satisfiable then T is (M@ Ms)satisfiable.

Proor. We know that, for i = 1,2, I'; U arr(X, E) is M;-satisfiable. Since
M; and M are stably infinite, there exist a X;-interpretation A and a Y-
interpretation B such that

e Ay, THUarr(X, E);
e By, ToUarr(X, E);
e A, is countably infinite, for all sorts o € ¥%;
e B, is countably infinite, for all sorts o € X5.

Moreover, we have 24 = y# iff 22 =y, for all variables z,y € X of the same
sort. Thus, by Proposition 9.1.4, there exists a (X1 U Xo)-interpretation F such
that F ':M1€BM2 Fl U FQ U G,T’I’(X, E) It follows that Fl @] FQ is (Ml @] MQ)—
satisfiable, and therefore also I is is (M7 U My)-satisfiable.

Proposition
Algorithm NELSON-OPPEN is correct.

PrOOF. Termination is obvious. Partial correctness follows by Propositions 9.2.4
and 9.2.5.



