Chapter 9

Combination

Decision Procedures
Last update of lecture notes: Tuesday, March 7, 2006
Last update of this chapter: Tuesday, March 7, 2006.

9.1 Combination Theorem

9.1.1 Definition

Let $M_{i}=\left(\Sigma_{i}, \mathbf{A}_{i}\right)$ be a modelclass, for $i=1,2$. The combination of M_{1} and M_{2} is the modelclass $M_{1} \oplus M_{2}=(\Sigma, \mathbf{A})$ where $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ and $\mathbf{A}=$ $\left\{\mathcal{A} \mid \mathcal{A}^{\Sigma_{1}} \in \mathbf{A}_{1}\right.$ and $\left.\mathcal{A}^{\Sigma_{2}} \in \mathbf{A}_{2}\right\}$.

9.1.2 Proposition

Let M be a Σ-modelclass, let \mathcal{A} and \mathcal{B} be Σ-interpretations over X, and let φ be a Σ-formula such that vars $(\varphi) \subseteq X$. Assume that $\mathcal{A} \cong \mathcal{B}$. Then

$$
\mathcal{A} \models_{M} \varphi \quad \Longleftrightarrow \quad \mathcal{B} \models_{M} \varphi
$$

Proof. Immediate.

9.1.3 Proposition

For $i=1,2$, let M_{i} be a Σ_{i}-modelclass, let φ_{i} be a Σ_{i}-formula, and let $X_{i}=$ $\operatorname{vars}\left(\varphi_{i}\right)$. Also, let $\Sigma_{0}=\Sigma_{1} \cap \Sigma_{2}$ and $X_{0}=X_{1} \cap X_{2}$. Assume that there exist a Σ_{1}-interpretation \mathcal{A} over X_{1}, and a Σ_{2}-interpretation \mathcal{B} over X_{2} such that:

$$
\begin{gathered}
\mathcal{A} \models_{M_{1}} \varphi_{1}, \\
\mathcal{B} \models_{M_{2}} \varphi_{2}, \\
\mathcal{A}^{\Sigma_{0}, X_{0}} \cong \mathcal{B}^{\Sigma_{0}, X_{0}} .
\end{gathered}
$$

Then there exists a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-interpretation \mathcal{F} over $X_{1} \cup X_{2}$ such that:

$$
\begin{aligned}
& \mathcal{F} \models M_{M_{1} \oplus M_{2}} \varphi_{1} \wedge \varphi_{2} \\
& \mathcal{F}^{\Sigma_{1}, X_{1}} \cong \mathcal{A} \\
& \mathcal{F}^{\Sigma_{2}, X_{2}} \cong \mathcal{B}
\end{aligned}
$$

Proof. Let h be an isomorphism of $\mathcal{A}^{\Sigma_{0}, X_{0}}$ into $\mathcal{B}^{\Sigma_{0}, X_{0}}$. By Proposition 9.1.2, we can assume without loss of generality that $\mathcal{A}^{\Sigma_{0}, X_{0}}=\mathcal{B}^{\Sigma_{0}, X_{0}}$. In particular, this implies that $A_{\sigma}=B_{\sigma}$, for all $\sigma \in \Sigma_{0}$.

We define a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-interpretation \mathcal{F} over $X_{1} \cup X_{2}$ by letting:

$$
F_{\sigma}= \begin{cases}A_{\sigma}, & \text { if } \sigma \in \Sigma_{1}^{S} \\ B_{\sigma}, & \text { if } \sigma \in \Sigma_{2}^{S} \backslash \Sigma_{1}^{S}\end{cases}
$$

and:

- for variables:

$$
u^{\mathcal{F}}= \begin{cases}u^{\mathcal{A}}, & \text { if } u \in X_{1} \\ u^{\mathcal{B}}, & \text { if } u \in X_{2} \backslash X_{1}\end{cases}
$$

- for constant symbols:

$$
c^{\mathcal{F}}= \begin{cases}c^{\mathcal{A}}, & \text { if } c \in \Sigma_{1}^{\mathrm{C}}, \\ c^{\mathcal{B}}, & \text { if } c \in \Sigma_{2}^{\mathrm{C}} \backslash \Sigma_{1}^{\mathrm{C}},\end{cases}
$$

- for function symbols:

$$
f^{\mathcal{F}}= \begin{cases}f^{\mathcal{A}}, & \text { if } f \in \Sigma_{1}^{\mathrm{F}} \\ f^{\mathcal{B}}, & \text { if } f \in \Sigma_{2}^{\mathrm{F}} \backslash \Sigma_{1}^{\mathrm{F}}\end{cases}
$$

- for predicate symbols:

$$
p^{\mathcal{F}}= \begin{cases}p^{\mathcal{A}}, & \text { if } p \in \Sigma_{1}^{\mathrm{P}} \\ p^{\mathcal{B}}, & \text { if } p \in \Sigma_{2}^{\mathrm{P}} \backslash \Sigma_{1}^{\mathrm{P}}\end{cases}
$$

By construction, $\mathcal{F}^{\Sigma_{1}, X_{1}} \cong \mathcal{A}$ and $\mathcal{F}^{\Sigma_{2}, X_{2}} \cong \mathcal{B}$. Thus, by Proposition 9.1.2, $\mathcal{F} \models{ }_{M_{1} \oplus M_{2}} \varphi_{1} \wedge \varphi_{2}$.

9.1.4 Proposition

For $i=1,2$, let M_{i} be a Σ_{i}-modelclass, let φ_{i} be a Σ_{i}-formula, and let $X_{i}=$ $\operatorname{vars}\left(\varphi_{i}\right)$. Assume that $\Sigma_{1}^{\mathrm{C}} \cap \Sigma_{2}^{\mathrm{C}}=\Sigma_{1}^{\mathrm{F}} \cap \Sigma_{2}^{\mathrm{F}}=\Sigma_{1}^{\mathrm{P}} \cap \Sigma_{2}^{\mathrm{P}}=\varnothing$. Finally, assume that there exist a Σ_{1}-interpretation \mathcal{A} over X_{1} and a Σ_{2}-interpretation \mathcal{B} over X_{2} such that:

- $\mathcal{A} \models_{M_{1}} \varphi_{1}$;
- $\mathcal{B} \models_{M_{2}} \varphi_{2}$;
- $\left|A_{\sigma}\right|=\left|B_{\sigma}\right|$, for all sorts $\sigma \in \Sigma_{1}^{\mathrm{S}} \cap \Sigma_{2}^{\mathrm{S}}$;
- $x^{\mathcal{A}}=y^{\mathcal{A}}$ iff $x^{\mathcal{B}}=y^{\mathcal{B}}$, for all variables $x, y \in X_{1} \cap X_{2}$ of the same sort.

Then there exists a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-interpretation \mathcal{F} over $X_{1} \cup X_{2}$ such that $\mathcal{F} \models_{M_{1} \oplus M_{2}}$ $\varphi_{1} \wedge \varphi_{2}$.

Proof. Let $X=X_{1} \cap X_{2}$. For each sort $\sigma \in \Sigma_{1}^{\mathrm{S}} \cap \Sigma_{2}^{\mathrm{S}}$, define a function h_{σ} : $X_{\sigma}^{\mathcal{A}} \rightarrow X_{\sigma}^{\mathcal{B}}$ by letting $h_{\sigma}\left(x^{\mathcal{A}}\right)=x^{\mathcal{B}}$, for all variables $x \in X_{\sigma}$. By construction, h_{σ} is bijective. It follows that $\left|X_{\sigma}^{\mathcal{A}}\right|=\left|X_{\sigma}^{\mathcal{B}}\right|$. We can therefore extend h_{σ} to a bijective function $h_{\sigma}^{\prime}: A_{\sigma} \rightarrow B_{\sigma}$. Thus, we have found a family of bijective functions

$$
h=\left\{h_{\sigma}: A_{\sigma} \rightarrow B_{\sigma} \mid \sigma \in \Sigma_{1}^{\mathrm{S}} \cap \Sigma_{2}^{\mathrm{S}}\right\} .
$$

Clearly, h is an isomorphism of $\mathcal{A}^{\Sigma_{1} \cap \Sigma_{2}, X}$ into $\mathcal{B}^{\Sigma_{1} \cap \Sigma_{2}, X}$. By Proposition 9.1.3, there exists a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-interpretation \mathcal{F} over $X_{1} \cup X_{2}$ such that $\mathcal{F} \models_{M_{1} \oplus M_{2}}$ $\varphi_{1} \wedge \varphi_{2}$.

9.2 Nelson-Oppen

9.2.1 Definition

A Σ-modelclass M is stably infinite provided that every quantifier-free Σ formula φ is M-satisfiable if and only if there exists a Σ-interpretation \mathcal{A} over $\operatorname{vars}(\varphi)$ such that $\mathcal{A} \models_{M} \varphi$ and A_{σ} is countably infinite, for every $\sigma \in \Sigma^{\mathrm{S}}$.

9.2.2 Definition

Let X be a set of variables, and let E be a well-sorted equivalence relation of X. The arrangement of X with respect to E is the set of literals

$$
\begin{aligned}
\operatorname{arr}(E, X)= & \{x \approx y \mid(x, y) \in E\} \\
& \{x \nsim y \mid(x, y) \notin E\}
\end{aligned}
$$

9.2.3 Algorithm (nelson-oppen)

Input: For $i=1,2, M_{i}$ is a stably infinite Σ_{i}-modelclass with a decidable quantifier-free satisfiability problem. The algorithm takes in input a finite set Γ of $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-literals
Output: satisfiable, if Γ is $\left(M_{1} \oplus M_{2}\right)$-satisfiable; unsatisfiable otherwise

function NELSON-OPPEN(Γ)

By opportunely introducing fresh variables, obtain a finite set

$$
\Gamma_{1} \cup \Gamma_{2}
$$

of literals, where Γ_{i} contains only Σ_{i}-literals, and such that Γ and $\Gamma_{1} \cup \Gamma_{2}$ are $\left(M_{1} \oplus M_{2}\right)$-equisatisfiable

```
    X\leftarrowvars(\mp@subsup{\Gamma}{1}{})\cap\operatorname{vars}(\mp@subsup{\Gamma}{2}{})
    for all well-sorted equivalence relations E of X do
        if }\mp@subsup{\Gamma}{1}{}\cup\operatorname{arr}(X,E)\mathrm{ is }\mp@subsup{M}{1}{}\mathrm{ -unsatisfiable then
        return unsatisfiable
    else if }\mp@subsup{\Gamma}{2}{}\cup\operatorname{arr}(X,E)\mathrm{ is }\mp@subsup{M}{2}{}\mathrm{ -unsatisfiable then
        return unsatisfiable
    else
        return satisfiable
        end if
    end for
end function
```


9.2.4 Proposition

If Algorithm NELSON-OPPEN returns unsatisfiable then Γ is $\left(M_{1} \oplus M_{2}\right)$ unsatisfiable.

Proof. By contradiction, assume that Γ is $\left(M_{1} \oplus M_{2}\right)$-satisfiable. Then $\Gamma_{1} \cup \Gamma_{2}$ is $\left(M_{1} \oplus M_{2}\right)$-satisfiable. Let \mathcal{F} be a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-intepretation such that $\mathcal{F} \models_{M_{1} \oplus M_{2}}$ $\Gamma_{1} \cup \Gamma_{2}$. Moreover, let E be the equivalence relation of X defined by $(x, y) \in E$ iff the variables x, y have the same sort and $x^{\mathcal{A}}=y^{\mathcal{A}}$. By construction, $\mathcal{F} \models$ $\Gamma_{1} \cup \operatorname{arr}(X, E)$ and $\mathcal{F} \models \Gamma_{2} \cup \operatorname{arr}(X, E)$. This contradicts the fact that the algorithm returned unsatisfiable.

9.2.5 Proposition

If Algorithm NELSON-OPPEN returns satisfiable then Γ is $\left(M_{1} \oplus M_{2}\right)$ satisfiable.
Proof. We know that, for $i=1,2, \Gamma_{i} \cup \operatorname{arr}(X, E)$ is M_{i}-satisfiable. Since M_{1} and M_{2} are stably infinite, there exist a Σ_{1}-interpretation \mathcal{A} and a Σ_{2} interpretation \mathcal{B} such that

- $\mathcal{A} \models_{M_{1}} \Gamma_{1} \cup \operatorname{arr}(X, E)$;
- $\mathcal{B} \models_{M_{2}} \Gamma_{2} \cup \operatorname{arr}(X, E)$;
- A_{σ} is countably infinite, for all sorts $\sigma \in \Sigma_{1}^{S}$;
- B_{σ} is countably infinite, for all sorts $\sigma \in \Sigma_{2}^{S}$.

Moreover, we have $x^{\mathcal{A}}=y^{\mathcal{A}}$ iff $x^{\mathcal{B}}=y^{\mathcal{B}}$, for all variables $x, y \in X$ of the same sort. Thus, by Proposition 9.1.4, there exists a $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-interpretation \mathcal{F} such that $\mathcal{F} \models_{M_{1} \oplus M_{2}} \Gamma_{1} \cup \Gamma_{2} \cup \operatorname{arr}(X, E)$. It follows that $\Gamma_{1} \cup \Gamma_{2}$ is $\left(M_{1} \cup M_{2}\right)$ satisfiable, and therefore also Γ is is $\left(M_{1} \cup M_{2}\right)$-satisfiable.

9.2.6 Proposition

Algorithm NELSON-OPPEN is correct.
Proof. Termination is obvious. Partial correctness follows by Propositions 9.2.4 and 9.2.5.

