
1

- 1 -BF - ES

Embedded Systems

- 2 -BF - ES

Embedded Systems

Bernd Finkbeiner (finkbeiner@cs.uni-sb.de)

Rüdiger Ehlers (ehlers@cs.uni-sb.de)

Hans-Jörg Peter (peter@cs.uni-sb.de)

Michael Gerke (micge@hotmail.com)

Lectures:
Tuesday/Thursday 14:15 -15:45

Webpage react.cs.uni-sb.de/courses/es

Tutorial
time/place to be determined
vote for best time on doodle poll → webpage

2

- 3 -BF - ES

Textbook

Peter Marwedel.
Embedded System Design.
Springer, Berlin;
2nd Print
(1. November 2005)
ISBN-10: 0387292373

- 4 -BF - ES

Other Recommended Literature

Giorgio C. Buttazzo
Hard Real-Time Computing
Systems

Jürgen Teich,
Digitale Hardware/Software
Systeme

Heinz Wörn,
Uwe Brinkschulte,
Echtzeitsysteme

3

- 5 -BF - ES

Exam Policy

Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester
exams:
> 50% of points in homeworks and
> 50% of points in midterm exam

Final grade:
best grade in end-of-term or end-of-semester exam

Note: exam policy has been modified to ensure consistency with
module description.

- 6 -BF - ES

Embedded Systems

Embedded system =
system embedded into a large
(technical) product which
controls the larger system or
provides information
processing for it.

Estimates for number of embedded systems
in current use: >1010

[Rammig 2000, Motorola 2001]

4

- 7 -BF - ES

400 horses

100 microprocessors

- 8 -BF - ES

5

- 9 -BF - ES
Thanks to PATH publication unit

- 10 -BF - ES $4 billion development effort

6

- 11 -BF - ES

Mars, July 4, 1997

- 12 -BF - ES

The MARS Pathfinder problem

“But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft
began experiencing total system resets,
each resulting in losses of data. The
press reported these failures in terms
such as "software glitches" and "the
computer was trying to do too many
things at once".” …

7

- 13 -BF - ES

The MARS Pathfinder problem

System overview:
Information Bus (IB):

• Buffer for exchanging data between different tasks
• Shared resource of two tasks M and B

Three tasks:
• Meteorological data gathering task (M):

– collects meteorological data
– reserves IB, writes data to IB, releases IB
– infrequent task, low priority

• Bus management (B):
– data transport from IB to destination
– reserves IB, data transport, releases IB
– frequent task, high priority

- 14 -BF - ES

The MARS Pathfinder problem

Three tasks:
• ...
• “Communication task” (C):

– medium priority, does not use IB

Scheduling with fixed priorities.

Watch dog timer (W):
• Execution of B as indicator of system hang-up
• If B is not activated for certain amount of time: Reset the

system

8

- 15 -BF - ES

The MARS Pathfinder problem

(see http://research.microsoft.com/~mbj/Mars_Pathfinder/)

“Most of the time this combination worked fine.

However, very infrequently it was possible for an interrupt to occur that
caused the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus thread
was blocked waiting for the (low priority) meteorological data thread. In
this case, the long-running communications task, having higher priority
than the meteorological task, would prevent it from running,
consequently preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that
the data bus task had not been executed for some time, conclude that
something had gone drastically wrong, and initiate a total system reset.

This scenario is a classic case of priority inversion.”

- 16 -BF - ES

Priority inversion

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

Reset by watchdog timer

9

- 17 -BF - ES

Classic solution: Priority inheritance

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

NO reset by watchdog timer

J3 inherits priority of J1

- 18 -BF - ES

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem:

the VxWorks operating system used in the pathfinder
implements a flag for the calls to mutual exclusion primitives.
This flag allows priority inheritance to be set to “on”.
When the software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

10

- 19 -BF - ES

Embedded Systems

Embedded system = engineering artifact involving computation
that is subject to physical constraints

Constraint #1: Reaction to the physical environment
Reaction constraints: deadlines, throughput, jitter

Constraint #2: Execution on a physical platform
Execution constraints: Bounds on available processor speeds, power,

hardware failure rates

Challenge: Gain control over the interplay of computation with
reaction and execution constraints, so as to meet given
requirements.

- 20 -BF - ES

Characteristics of Embedded Systems

Must be dependable:

Reliability R(t) = probability of system working correctly
provided that is was working at t=0

Maintainability M(d) = probability of system working correctly d
time units after error occurred.

Availability A(t): probability of system working at time t

Safety: no harm to be caused

Security: confidential and authentic communication

Even perfectly designed systems can fail if the assumptions about the workload
and possible errors turn out to be wrong.

Making the system dependable must not be an after-thought, it must be
considered from the very beginning.

11

- 21 -BF - ES

Characteristics of Embedded Systems

Must be efficient:
• Energy efficient

• Code-size efficient (especially for systems on a chip)

• Run-time efficient

• Weight efficient

• Cost efficient

Dedicated towards a certain application
Knowledge about behavior at design time can be used to
minimize resources and to maximize robustness

Dedicated user interface
(no mouse, keyboard and screen)

- 22 -BF - ES

Characteristics of Embedded Systems

Many ES must meet real-time constraints
A real-time system must react to stimuli from the controlled
object (or the operator) within the time interval dictated by the
environment.

For real-time systems, right answers arriving too late are
wrong.
„A real-time constraint is called hard, if not meeting that
constraint could result in a catastrophe“ [Kopetz, 1997].

All other time-constraints are called soft.

12

- 23 -BF - ES

Characteristics of Embedded Systems

Frequently connected to physical environment through
sensors and actuators.

Typically Embedded Systems are
Hybrid systems (analog + digital parts)

Reactive systems

„A reactive system is one which is in continual interaction
with is environment and executes at a pace determined by
that environment“ [Bergé, 1995]
Behavior depends on input and current state.

- 24 -BF - ES

Overview

13

- 25 -BF - ES

Specifications

- 26 -BF - ES

Specification of embedded systems:
Requirements for specification techniques (1)

Hierarchy
Humans not capable to understand systems containing
more than a few objects.
Most actual systems require far more objects.
⇒ two kinds of hierarchy are used:

Behavioral hierarchy
Examples: states, processes, procedures.
Structural hierarchy
Examples: multipliers, FPUs, processors, printed circuit boards

Timing behavior
State-oriented behavior
suitable for reactive systems

14

- 27 -BF - ES

Requirements for specification techniques (2)

Event-handling (external or internal events)
No obstacles for efficient implementation
Support for the design of dependable systems
Unambiguous semantics, ...
Exception-oriented behavior
Not acceptable to describe exceptions for every state.

- 28 -BF - ES

Requirements for specification techniques (3)

Concurrency
Real-life systems are concurrent
Synchronization and communication
Components have to communicate!
Presence of programming elements
For example, arithmetic operations, loops, and function
calls should be available
Executability (no algebraic specification)
Support for the design of large systems (OO)
Domain-specific support

15

- 29 -BF - ES

Requirements for specification techniques (4)

Readability
Portability and flexibility
Non-functional properties
fault-tolerance, availability, EMC-properties, weight, size,
user friendliness, extendibility, expected life time, power
consumption...
Adequate model of computation

- 30 -BF - ES

Models of computation

Models of computation define [Lee, UCB, 1999]:
How computations of several components proceed.
What does it mean to be a component:
Subroutine? Process? Thread?
The mechanisms by which components interact:
Message passing? Rendez-vous?
What components know about each other
(global variables? Implicit behavior of other
components)

16

- 31 -BF - ES

Models of computation
- Examples (1) -

Communicating finite state machines (CFSMs):

Discrete event model

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 19

- 32 -BF - ES

Models of computation
- Examples (2) -

Differential equations

Needed for hybrid systems with analog part

b
t
x
=

∂
∂

2

2

17

- 33 -BF - ES

Models of communication

Asynchronous message passing

Synchronous message passing

- 34 -BF - ES

StateCharts

StateCharts = the only unused combination of
„flow“ or „state“ with „diagram“ or „charts“

Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +

Broadcast communication
Industry standard for modelling automotive applications
Appear in UML (Unified Modeling Language), Stateflow,
Statemate, …
Warning: Syntax and Semantics may vary.

Start with brief review on Finite State Machines.

18

- 35 -BF - ES

Acceptor (1)
Definition:
M=(I, S, s0, δ, F) is a deterministic finite automaton iff

I is a finite, non-empty set (input symbols),
S is a finite, non-empty set (states),
s0 ∈ S (initial state),
δ : S × I → S (transition function),
F ⊆ S (final states).

Example for representation:

Z0 Z1

Z2Z3

b

b

b

b

a a

aa

- 36 -BF - ES

Acceptor (2)

Let
w = w0 … wn-1 (n ∈ N) be a finite sequence of input symbols
s = s0 … sn (n ∈ N) be a finite sequence of states with
si+1 = δ(si, wi) (0 ≤ i ≤ n-1)

Then
δ*(s0, w) = sn

sn is the state reached by input sequence w.

M accepts w = w0 … wn-1 (n ∈ N) iff δ*(s0, w) ∈ F.

19

- 37 -BF - ES

Transducer – Mealy automaton (1)

Definition:
M=(I, O, S, s0, δ, λ) is a Mealy automaton iff

I is a finite, non-empty set (input symbols),
O is a finite, non-empty set (output symbols),
S is a finite, non-empty set (states),
s0 ∈ S (initial state),
δ : S × I → S (transition function),
λ : S × I → O (output function).

Example for representation:
Z0 Z1

Z2Z3

c/0

c/3

c/2

c/1

w/0 w/1

w/2w/3

- 38 -BF - ES

Transducer – Mealy automaton (2)

Let
w = w0 w1… be an infinite sequence of input symbols.
s = s0 s1… be an infinite sequence of states with
si+1 = δ(si, wi) ∀ i ≥ 0
u = u0 u1… be an infinite sequence of output symbols with
ui = λ(si, wi) ∀ i ≥ 0

Then
δ*(s0, w0 … wn-1) = sn for a finite prefix of w
sn is the state reached by w0 … wn-1.
λ*(s0, w) = u.

M „transduces“ the input sequence w into the output
sequence u iff u = λ*(s0, w).

20

- 39 -BF - ES

Mealy automaton (3)

In a Mealy automaton

• the output depends on the current state and
the current input symbol,

• the next state depends on the current state and
the current input symbol.

- 40 -BF - ES

Transducer – Moore automaton (1)

Definition:
M=(I, O, S, s0, δ, λ) is a Moore automaton iff

I is a finite, non-empty set (input symbols),
O is a finite, non-empty set (output symbols),
S is a finite, non-empty set (states),
s0 ∈ S (initial state),
δ : S × I → S (transition function),
λ : S → O (output function).

Example for representation:
Z0 Z1

Z2Z3

c

c

c

c

w w

ww
3 2

10

21

- 41 -BF - ES

Transducer – Moore automaton (2)

Let
w = w0 w1… be an infinite sequence of input symbols.
s = s0 s1… be an infinite sequence of states with
si+1 = δ(si, wi) ∀ i ≥ 0
u = u0 u1… be an infinite sequence of output symbols with
ui = λ(si) ∀ i ≥ 0

Then
δ*(s0, w0 … wn-1) = sn for a finite prefix of w
sn is the state reached by w0 … wn-1.
λ*(s0, w) = u.

M „transduces“ the input sequence w into the output
sequence u iff u = λ*(s0, w).

- 42 -BF - ES

Moore and Mealy automata

• A Moore automaton can be seen as a special
Mealy automaton where the output function
does not depend on the current input symbol.

• Moore and Mealy automata can be
transformed into each other.

22

- 43 -BF - ES

StateCharts

Statecharts introduced in
Harel: “StateCharts: A visual formalism for complex
systems”. Science of Computer Programming, 1987.
More detailed in
Drusinsky and Harel: “Using statecharts for hardware
desription and synthesis”, IEEE Trans. On Computer
Design, 1989.
Formal semantics in
Harel, Naamad: “The statemate semantics of
statecharts”, ACM Trans. Soft. Eng. Methods, 1996.

- 44 -BF - ES

StateCharts –
Additional features compared to classical
deterministic automata

Non-determinism
Hierarchy
Variables with complex data types
Concurrency
Transitions with conditions
Different I/O: transitions can

Be active depending on the presence of events,
“produce events”,
change variables

Timers used to produce “timeout events”.

23

- 45 -BF - ES

Non-deterministic transitions

Edge label (simple version):

Transition from A to B iff event f is present.
Effect of transition from A to B: Event g is produced.
Events may be

• Present or
• Not present

Events may be
• External events (provided by the environment)
• Internal events (produced by internal transitions)

Produced events exist only for one step.

A B
f/g

- 46 -BF - ES

Non-deterministic transitions

Non-determinism:

Events f and h may be present at the same time.
⇒ Non-deterministic transitions,

different behaviours are possible

A
Bf/g

Ch/i

24

- 47 -BF - ES

Introducing hierarchy

superstate

substates

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

- 48 -BF - ES

Definitions

Current states of FSMs are also called active states.
States which are not composed of other states are called
basic states.
States containing other states are called super-states.
For each basic state s, the super-states containing s are
called ancestor states.
Super-states S are called OR-super-states, if exactly one
of the sub-states of S is active whenever S is active.

ancestor state of E

25

- 49 -BF - ES

Hierarchy

Hierachy information may be represented by a hierarchy
tree with basic states as leaves.

Statechart SC

SC

S Z

A B C D E

• Transitions between all
levels of hierarchy possible!

• When a basic state is
active, then all its ancestor
states are active, too.

- 50 -BF - ES

Hierarchy - priority rules for transitions (1)

What happens, if
state S is active and
events G and F are present?

26

- 51 -BF - ES

Hierarchy - priority rules for transitions (2)

Priority of „higher level“ transitions over „lower level“ transitions!

- 52 -BF - ES

Hierarchy - transitions to super-states

What is the meaning of transitions to superstates,
i.e., what basic state is entered when a superstate is entered?

⇒ default state mechanism
⇒ history mechanism

27

- 53 -BF - ES

Default state mechanism

Filled circle indicates
sub-state entered
whenever super-
state is entered.
Not a state by itself!
Allows internal
structure to be
hidden for outside
world

- 54 -BF - ES

History mechanism

For event m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

28

- 55 -BF - ES

Combining history and default state mechanism

same meaning

- 56 -BF - ES

History and default state mechanism

History and default mechanisms may be used at different levels of
hierarchy.

29

- 57 -BF - ES

History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states H

History connectors
remember states
at the same level
as the history
connector!

- 58 -BF - ES

History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states H

remembers
OP

What state is entered
after sequence
SENSOR_DISCONNECTED,
SENSOR_CONNECTED?

30

- 59 -BF - ES

History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states H*

Deep history
connectors H*
remember basic
states!

*

- 60 -BF - ES

History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states H*

remembers
OP, FA

What state is entered
after sequence
SENSOR_DISCONNECTED,
SENSOR_CONNECTED?

*

31

- 61 -BF - ES

Variables with complex data types
Problem of classical automata:

Both control and data have to be represented as graphical states
Here:

Include typed variables (e.g. integers, reals, strings, records) to represent data
Both „graphical states“ and variables contribute to the state of the statechart.
Notation:

• „graphical states“ = states
• „graphical states“ + variables = status

- 62 -BF - ES

Example: Alarm Watch

Example from Harel: “StateCharts: A visual formalism for complex systems”. Science of Computer Programming, 1987.

P1 = alarm1_enabled ∧ (alarm2_disabled ∨ T1≠T2)
P2 = alarm2_enabled ∧ (alarm1_disabled ∨ T1≠T2)
P2 = alarm1_enabled ∧ alarm2_enabled ∧ T1=T2

32

- 63 -BF - ES

Events and variables

Events:
Exist only until the next evaluation of the model
Can be either internally or externally generated

Variables:
Values of variables keep their value until they are
reassigned.

- 64 -BF - ES

General form of edge labels

Meaning:
Transition may be taken, if event occurred in last step and
condition is true
If transition is taken, then reaction is carried out.

Conditions:
Refer to values of variables

Actions:
Can either be assignments for variables or creation of events

Example:
a & [x = 1023] / overflow; x:=0

event [condition] / action

33

- 65 -BF - ES

Events, conditions, actions

Possible events (incomplete list):
Atomic events

• Basic events: A, B, BUTTON_PRESSED
• Entering, exiting a state: en(S), ex(S)
• Values of conditions: tr(cond), fs(cond)
• Change of conditions: [cond], e.g. [X>5]
• Change of values: ch(X)
• Access to variables: rd(X), wr(X)
• Timeout events (see later)

Compound events: logical connectives and, or, not

- 66 -BF - ES

Events, conditions, actions

Possible conditions (incomplete list):
Atomic conditions

• Constants: true, false
• Condition variables (i.e. variables of type boolean)
• Relations between values: X > 1023, X ≤ Y
• Residing in a state: in(S)

Compound events: logical connectives and, or, not

34

- 67 -BF - ES

Events, conditions, actions

Possible actions (incomplete list):
Atomic actions

• Emitting events: E (E is event variable)
• Assignments: X := expression
• Scheduled actions: sc!(A, N) (means perform action after N

time units)
Compound actions

• List of actions: A1; A2; A3
• Conditional action: if cond then A1 else A2

- 68 -BF - ES

Concurrency
Convenient ways of describing concurrency are
required.
AND-super-states: FSM is in all (immediate) sub-
states of a AND-super-state; Example:

35

- 69 -BF - ES

Concurrency

Example for active states:

Classical automata have to compute product automata
to express concurrency

⇒ structural information is lost
⇒ increase in size

answ.

off on

l-m. k-m.

K.w
.

K.p.

Default states

Active states

L.w
.

L.p.

AND-super-state

- 70 -BF - ES

Entering and leaving AND-super-states

Line-monitoring and key-monitoring are entered and left,
when key-on and key-off events occur.

incl.

36

- 71 -BF - ES

Types of states

In StateCharts, states are either

basic states, or

AND-super-states, or

OR-super-states.

- 72 -BF - ES

Concurrency

How to represent this statechart with OR-states only?

37

- 73 -BF - ES

Timers

Since time needs to be modeled in embedded
systems, timers need to be modeled.
In StateCharts, special edges can be used for
timeouts.

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.
If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

- 74 -BF - ES

Using timers in answering machine

