Embedded Systems

BF -ES

10

Project: Ignition Controller

BF -ES

Project: Ignition Controller

BF - ES

Project: Ignition Controller

A

i

Due: December 11, 2008

BF - ES

Overview of simulation REVIEW

Initialization

Update
current time

Assign new values

. Evaluate processes
to signals

Resume processes

End of simulation

BF - ES - 5-

Initialization REVIEW

= At the beginning of initialization, the current time, t_,,
is assumed to be 0 ns.
= Aninitial value is assigned to each signal.
= Taken from declaration, if specified there, e.g.,
» signal s : std_ulogic := "0;
= Otherwise: First value in enumeration for enumeration based data types, e.g.
» signal s : std_ulogic
with
type std_ulogic is (‘U", °X", "07, "1°, °Z°, "W, LY, CHY, LY,
= initial value is "U’
= This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.
= [nitialization phase executes each process exactly once (until it suspends).
= During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) — more details later.
= |f process stops at ,wait for“-statement, then update process activation list —
more details later.
= After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), t,... is calculated:
= Time t,q, Of the next simulation cycle = earliest of
1. time’high (end of simulation time).

2. Earliest time in transaction list (if not empty)

BE-ES 3. Earliest time in process activation list (if not empty). 6.

Signal assignment phase — REVIEW
first part of step

= Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

" tCUI’I’ = tnext
= This time t,,; was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.
» Forall (s, v, t) in transaction list:
= Remove (s, v, t,,) from transaction list.
" sissettov.
= For all processes p; which wait on signal s:
= Insert (p, t.,,) in process activation list.
= Similarly, if condition of ,wait until“-expression changes
value.

Curr.

BF - ES ST

Process execution phase — REVIEW
second part of step (1)

= Resume all processes p, with entries (p;,)
in process activation list.
= Execute all activated processes ,,in parallel“ (in fact: in arbitrary
order).
= Signal assignments
= are collected in transaction list (not executed immediately!).
= Examples:
e s<=aandb;
- Lfe{)v be the conjunction of current value of a and current value
of b.

— Insert (s, v, t,,) in transaction list.
e s<="1" after 10 ns;
— Insert (s, '1", t,, + 10 ns) into transaction list.
» Processes are executed until wait statement is encountered.
= If process p; stops at ,wait for“-statement, then update process
activation list:
= Example:
* p, stops at ,wait for 20 ns;"

* Insert (p;, t,,, + 20 ns) into process activation list

BF - ES - 8-

Process execution phase — REVIEW
second part of step (2)

If some process reaches last statement and
= does not have a sensitivity list and
= |ast statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

= When all processes have stopped, the time of the next
simulation cycle t, is calculated:

= Time t,, of the next simulation cycle = earliest of
1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

= Stop if t..,, = time’high and transaction list and process
activation list are empty.

BF - ES - 9-
Delta delay - | REVIEW
Simulation of an RS-Flipflop
2”%6 entitiy RS_Flipflop is
g 0000 0001 port (R;S : in std_logic;
nQ Q, nQ :inout std_logic);
end RS_FlipFlop;
1st &
A architecture one of RS_Flipflop is
1100 begin
0111 Q process (R,S,Q,nQ)
— begin
Q =R nor nQ;
nQ := S nor Q;
Ons Ons+d Ons+2% end process;
end one;
1 1 1
0 0 0
Q 1 0 0 d cycles reflect the fact that no
no 0 0 1 real gate comes with zero delay.

BF - ES - 10-

. Write-write-conflicts” REVIEW

= Case 1:
Write-write-conflicts are restricted to

signal s : bit;
the same process

ge;izmess (i.e. they occur inside the same
process)
9 = = Then the second signal assignment
s <= ‘1 overwrites the first one.
CEELD o © e = This is the only case of ,non-concurrency"
end process p; of signal assignments

= Note that writing to different signals
occurs concurrently, however!

BF - ES 11 -
» Write-write-conflicts” REVIEW
signal s : dt; = Case 2:

Write-write-conflicts between different

S<= vy processes (explicit or implicit processes)

= |fthereis no ,resolution function” for the data

p process . . .
type dt, then writing the same signal by different

begin
processes in the same step is forbidden.
S <= V3 = If there is a resolution function, then the
resolution function computes the value of s at
end process p; ; .
time t.,,:
q : process » Value for s in the current step is computed
begin for each process separately,
« resolution function® for different values is
S < Vs used to compute final result.
end process q; = Inthe foIIowing:

Data type std_ulogic with resolution function
= data type std_logic

BF - ES S 12-

Multi-valued logic and
standard IEEE 1164 REVIEW

= How many logic values for modeling?
= Two (‘0" and '1") or more?
= |f real circuits have to be described, some abstraction of

the resistance (inversely-related to the strength) is
required.

= We introduce the distinction between:
= the logic level (as an abstraction of the voltage) and

= the strength (as an abstraction of the current drive capability) of a
signal.

= Both logic level and strength are encoded in logic values.

BF - ES - 13-

1 signal strength REVIEW

» Logic values '0'and 1.
= Both of the same strength.
» Encoding false and true, respectively.

= No meaningful “resolution function” possible, if ‘0" and
"1 are written to the same signal at the same time.

BF - ES - 14 -

2 signal strengths (1) REVIEW

Example: Tristate NOR
VDD
= Many subcircuits can be A
effectively disconnected
from the rest of the
circuit (they provide e] ENABLE = *0°
high impedance* i
" Cisd ted
values to the rest of the ENABLE -"| f:r>om Itf]e 'f;;norﬁf]:
circuit). c circuit
= Example: subcircuits ENABLE —f
with tri-state outputs.
A e
GROUND

& We introduce signal value 'Z', meaning ,high impedance * I

BF - ES - 15-

2 signal strengths (2) REVIEW

= We introduce an operation #, which generates the
effective signal value whenever two signals are
connected by a wire (“resolution”).

= #('0','Z)="0"; #('1',)Z2")="1"; '0" and '1' are ,stronger” than 'Z'

According to the partial order

X in the diagram, # returns the
I f th :

Z \ 1 strength arger of the two arguments

0 1 In order to define #('0','1"), we
N introduce 'X', denoting an

VA undefined signal level.
‘X' has the same strength as '0'
and '1'.

BF - ES - 16-

3 signal strengths REVIEW

Current set of values insufficient for describing real circuits:

Example: VDD
NMOS-Inverter

depletion
transistor

—

GROUND

Depletion transistor (resistor) contributes a weak value to be
considered in the #-operation for signal A

< Introduction of 'H', denoting a weak signal of the same level
as '1'.

#(H', '0)="0"; #(H,’Z") ="H'

BF - ES - 17 -

3 signal strengths REVIEW

=There may also be weak

signals of the same level as '0'

!X!
== Introduction of ‘L', denoting / \\' | } strongest
a weak signal of the same 0 1

level as 0" N K
#('L', '0')='0; #(L,'Z') = 'L; w }

_ ¥\ medium strength
=& [ntroduction of 'W', L '
denoting a weak signal of the N\ /
same level as X" =
#(L', 'H)="W"; #('L,'W") ='W,
»# reflected by the partial order
shown.

BF - ES . 18-

Z weakest

IEEE 1164 REVIEW

= VHDL allows user-defined value sets.
= Each model could use different value sets (unpractical)

= Definition of standard value set according to standard
IEEE 1164:

{IOI’ lll’ IZI’ |X|’ IHI’ ILI’ IWl’ IUl’ l_l}
= First seven values as discussed previously.
= 'U" un-initialized signal; used by simulator to initialize all
not explicitly initialized signals:
type std_ulogicis (U", "X, 0%, "1, °Z", W', 'L, H, -);
= " is used to specify don’t cares:
= Example: if a/='1" or b/="1' then f <= a exor b; else f <="*-’;
= ‘- may be replaced by arbitrary value by synthesis tools.

BF - ES - 19-

Outputs tied together

» In hardware, connected outputs can be used:
resolved signal

unresolved .'z’| 'zl o ‘n

signals outputs

bus

Modeling in VHDL: resolution functions
type std_ulogic is (‘'U', 'X','0', '1', 'Z', "W, 'L', 'H', -);
subtype std_logic is resolved std_ulogic;

BF - ES - 20-

10

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std;ulogic_vector) return std_logic is
variable result: std_ulogic:='Z'"; --weakest value is default
begin
if (s'length=1) then return s(s'low) --no resolution
else for i in s'range loop
result:=resolution_table(result,s(i))
end loop
end if;
return result;
end resolved,;

BF - ES S 21-

Resolution function for IEEE 1164

constant resolution_table : stdlogic_table := (
-Uu X 01 Z W L H -

(U, 'u, UL UL UL U, U UL YY), | U ™
CU, X X XXX, X X XY, -] X Z '\
(U, X, ‘0, 'X,'0,'0, '0,'0,'X), -|0] 0 1
cu, X, X e, X)), | 1 N
cu, X, 0, LW, L CHY X)), | Z | W
Cu, X0 LWL OWY, WY Y XY, | W \
cu, X, 0 1L, W, L W XY, | L L
(U, X0 L CH, W, W CHY XY, | H N/
(U, XX XXX, X X XD - e

);

BF - ES - 90

11

Inertial and transport delay model

= Signal assignment:

®= signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
= yaveform_element ::=

value_expression [after time_expression]

®* delay_mechanism ::=
transport | [reject time_expression] inertial

= Example:
* Inpsig <="0", "1"after 5 ns, 0" after 10 ns, "1” after 20 ns;

BF - ES - 23-
Inertial and transport delay model
= Example for signal assignment:
outp <= not inp after 10 ns;
]
outp?? LAAAAT
outp??
1
5 10 15 20 25 30 35
BF - ES - 24 -

12

Inertial and transport delay model

Two delay models in VHDL:

= |nertial delay (,trdge Verzdgerung®)
= Transport delay (,nichttrége Verzdogerung®)

Input

Output

= Inertial delay model is motivated by the fact that physical
gates absorb short pulses (spikes) at their inputs (due to

internal capacities)

BF - ES

- 25-

Inertial delay model

= .. isthe default model!

= Allows to specify the
delay of a gate or
operation

= Absorbs pulses at the
inputs which are shorter
than the delay specified
for the gate / operation

BF - ES

Input Output
O

INERTIAL is the default
Output <= NOT input AFTER 10 ns;

Output
Input

- 26-

13

Transport delay model

Allows to specify the delay of a

gate or operation
. Input Output
Transmits all pulses at the — Inverter

inputs ideally

-- TRANSPORT must be specified
Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

BF - ES - 27-

Inertial and transport delay model

entity DELAY is

end DELAY;
pl: process
architecture RTL of DELAY is begin
signal A, B, X, Y: bit; A<='0",'1" after 20 ns, 'O’
begin after 40 ns,'l' after 60 ns;
pO: process (A, B) B<='0,"1" after 30ns,'0'
begin after 35ns,'l' after 50 ns;
Y <= Anand B after 10 ns; wait for 80 ns;
X <= transport Anand B after 10 ns; end process
end process; end RTL;
A
B
X
Y
BF - ES - 28-

14

Semantics of transport delay model

= Restriction (at first):

* Do not consider resolution etc., i.e., assignments to a fixed
signal only made in one process

= Signal assignments change transaction list.

= Before transaction (s, t;, v,) is inserted into transaction
list, all transactions in the transaction list (s, t,, v,) with t,
> t, are removed from transaction list.

BF - ES - 29-

Example for transport delay model

inp outp

= Transaction list:

= At5ns: outp
(outp, 25ns, "07)

= At10ns:
(outp, 22.5ns, "1°), (outp, 25ns, "07) i

inp
Remove (outp, 25ns, "0%)!

=
(outp, 22.5ns, "17) I [I I I I [

BF - ES - 30-

Semantics of inertial delay model

= Semantics for more general version of inertial delay
statement:

= Inertial delay absorbs pulses at the inputs which are shorter than
the delay specified for the gate / operation.

= Key word reject permits absorbing only pulses which are shorter
than specified delay:

« Example:
— outp <=reject 3 nsinertial not inp after 10 ns;
— Only pulses smaller than 3 ns are absorbed.

— outp <=reject 10 ns inertial not inp after 10 ns;
and
outp <= not inp after 10 ns;
are equivalent.

BF - ES - 31-

Semantics of inertial delay model

= Same restriction as for transport model (at first):

= Do not consider resolution etc., i.e., assignments to a fixed signal only
made in one process

= Rule 1 as for transport delay model:
Before transaction (s, t;, v,) is inserted into transaction list, all
transactions in the transaction list (s, t,, v,) with t, > t, are removed
from transaction list.

* Rule 2 removes also some transactions with times < t;:

= Suppose the time limit for reject is rt.

= Transactions for signal s with time stamp in the intervall (t, —rt, t,) are
removed.

= Exception:
If there is in (t; —rt, t;) a subsequence of transactions for s immediately
before (s, t;, v;) which also assign value v, to s, then these transactions
are preserved.

BF - ES - 32-

16

Example

= Transaction list until ,wait for 15 ns*
(01, Ons, "0%), (01, 5ns, "0Y), (01, 15ns, "1°), (01, 20ns, "0°), (01, 25ns, "1°), (01, 30ns, "1°), (01, 45ns, "1°), (01, 50ns, "0°),
(02, Ons, "0%), (02, 5ns, "0%), (02, 15ns, "1°), (02, 20ns, "0°), (02, 25ns, "1°), (02, 30ns, "1°), (02, 45ns, "1°), (02, 50ns, "0%)
= Transaction list when process is reactivated at time 15ns:
(01, 20ns, "0), (01, 25ns, '1%), (01, 30ns, '1%), (01, 45ns, "1%), (01, 50ns, "0Y),
(02, 20ns, "0%), (02, 25ns, "1°), (02, 30ns, "1°), (02, 45ns, "1°), (02, 50ns, "0°)

BF -ES

Example

= Attime 15ns:
= insert transaction (02, 40ns, "1°).
= Remove transactions with time stamp > 40ns.

= Results in preliminary transaction list:
(01, 20ns, "0), (01, 25ns, "1%), (01, 30ns, '1%), (01, 45ns, 1%, (01, 50ns, "0Y),
(02, 20ns, "07), (02, 25ns, "17), (02, 30ns, '1%), (02, 40ns, "1%)

BF -ES

17

Example

= Results in preliminary transaction list:
501, 20ns, '0), gol, 25ns, 13 Eol, 30ns, 1} Eol, 45ns, 1; (o1, 50ns, "0°),
02, 20ns, "0°), (02, 25ns, "1°), (02, 30ns, "1°), (02, 40ns, "1°

= Rule2:

= (02, 25ns, 1), (02, 30ns, "1°) are preserved,
= (02, 20ns, "07), is removed.
= Resulting transaction list:

Eol, 20ns, Og Eol, 25ns, 1; Eol, 30ns, 1} (01, 45ns, "1°), (01, 50ns, "0°),

02, 25ns, "1°), (02, 30ns, "1°), (02, 40ns, "1

BF -ES

Rule 2:

Transactions for signal 02 with
time stamp in the intervall (40ns —
22ns, 40ns) = (18ns, 40ns) are
removed.

Exception:

If there is in (18ns, 40ns) a
subsequence of transactions for
02 immediately before

(02, 40ns, "1°) which also assign
value "1 to 02, then these
transactions are preserved.

Example

= Resulting wave form:

02 g

o1 L]
|
!

BF -ES

50 55 - 36-

18

Inertial and transport delay model

= For signal assignments of form
Inpsig <= "0" after 5 ns, "1"after 10 ns, "0” after 15 ns, "1’
after 20 ns;
only the first assignment follows the inertial delay model.

= |f there are assignments to a signal s in several processes
Py s Py
= Insert entries of form (s, t, v) into transaction list (,for each
signal driver separate entries”)
= Apply rules for inertial/transport delay model as defined above
(separately) to signals sFi.
= [f there are several entries (s”, t,,,, v;) in current assignment
phase:

* Apply resolution function to compute resulting value for
assignment to s.

BF - ES - 37-

Some additional language elements

= VHDL supports usual elements of imperative
programming languages, e.g.,

= Various data types

 scalar data types like integers, reals, enumeration types,
physical types,

* arrays,
* pointers,
* records,
« files

= Various control structures (if, case, when ... else, with ... select
etc.)

= Loops (loop, for, while)
= Functions and procedures

BF - ES - 38-

19

Functions and procedures

= Apart from entities / architectures there are also
functions and procedures in the usual (software) sense.

» Functions are typically used for providing conversion
between data types or for defining operators on user-
defined data types.

» Procedures may have parameters of directions in, out
and inout.
= in comparable to call by value,
= out for providing results,
= inout comparable to call by reference.

BF - ES - 39-

Example

architecture RTL of TEST is
function BOOL2BIT (BOOL: boolean) return bit is
begin
if BOOL then return '1'; else return '0"; end if;
end BOOL2BIT;

procedure EVEN_PARITY (
signal D: in bit_vector(7 downto 0);
signal PARITY : out bit) is
variable temp : bit;

begin
end;

signal DIN : bit_vector(7 downto 0);
signal BOOLL1 : boolean;
signal BIT1, PARITY : bit;
begin
do_it: process (BOOL1, DIN)
begin
BIT1 <= BOOL2BIT(BOOL1);
EVEN_PARITY(DIN, PARITY);
end process;

end;

BF - ES - 40-

Parameterized hardware

= Conditional component instantiation with if ... generate
construct.

» [terative component instantiation with for ... generate
construct.

» Parameterized design with generic parameters.

BF - ES - 41 -

Example: 8-bit shift register

Y Y Y Y Y Y
T(6) 1(5) T(4) 1(3) 2 (1) T(O).
SI = pitz bit6 bit5 bit4 bit3 bit2 bitl ~ 'bito — SO

TP Sl e il W o B e e S

RSTn

entity SHIFT8 is

port (RSTn, CLK, Sl : in std_logic;
SO : out std_logic);

end SHIFTS;

BF - ES - 42 -

21

y 4
SI = pit7 bit6 bit5 bit4 bit3

ST e e il W o M e e e S

RSTn

architecture RTL1 of SHIFT8 is

component DFF
port (RSTn, CLK, D: in std_logic;
: out std_logic);
end component;
signal T: std_logic_vector(6 downto 0);

begin

bit7 : DFF
port map (RSTn => RSTn, CLK => CLK,
D=>SI,Q=>T(6));
bit6 : DFF
port map (RSTn => RSTn, CLK => CLK,
D=>T(6), Q =>T(5));
bit5 : DFF
port map (RSTn, CLK, T(5), T(4));

Bitl : DFF
port map (RSTn, CLK, T(1), T(0));

bit0 : DFF
port map (RSTn, CLK, T(0), SO);

BF-ES end RTLL;

50 () O)) () O o O
I I I

- 43-

Example: 1024-bit shift register

architecture RTL2 of SHIFT1024 is

component DFF
port (RSTn, CLK, D: in std_logic;
Q : out std_logic);
end component;
signal T: std_logic_vector(1022 downto 0);
begin
g0: for iin 1023 downto O generate
gl:if (i = 1023) generate
bit1023 : DFF port map (RSTn,CLK,SI,T(1022));
end generate;
g2: if (i>0) and (i<1023) generate
bitm : DFF port map (RSTn,CLK,T(i),T(i-1));
end generate;
g3:if (i=0) generate
bit0 : DFF port map (RSTn,CLK,T(0),S0);
end generate;
end generate;

end RTL2;

BF - ES

- 44 -

22

Example: n-bit shift register

entity SHIFTn is

architecture RTL3 of SHIFTn is Gl (1 € O

port (RSTn, CLK, Sl : in std_logic;

component DFF SO : out std_logic);
port (RSTn, CLK, D: in std_logic; end SHIFTn;
Q : out std_logic);

end component;
signal T: std_logic_vector(n-2 downto 0);

begin

g0: for iin n-1 downto O generate
gl:if (i=n-1) generate
bit_high : DFF port map (RSTn,CLK,SI,T(n-2));
end generate;
g2: if (i>0) and (i<n-1) generate
bitm : DFF port map (RSTn,CLK,T(i),T(i-1));
end generate;
g3: if (i=0) generate
bit0 : DFF port map (RSTn,CLK,T(0),S0);
end generate;
end generate;

end RTL3;

BF - ES

- 45-

Example: n-bit shift register

= Component instantiation

component SHIFTn is

generic (n : positive);

port (RSTn, CLK, Sl :in std_logic;
SO : out std_logic);

end component;

begin

Shift32comp : SHIFTn
generic map (n =>32)
port map(RSTn => ...,

CLK => ...,
Sl=> ...,
SO =>...);

end;

BF - ES

- 46 -

23

Recursive descriptions

» |f parametrized hardware is described recursively, then
= generic-parameters,

= if ... generate-constructs for conditional component instantiation
and

= recursive component instantiation are used.

= Example: Conditional Sum Adder

BF - ES - 47 -

Conditional Sum Adder

= A conditional sum adder CSA, computes both sum and
sum + 1 of two operand, i.e., it implements a Boolean
function

+n : BZn - BZn+2 ,
(@p.qs o 89, Bygy ey Dy) =
(carryl, suml,,, ..., suml,, carryO, sumO, 4, ..., SumO,) with
<carry0, sumQ,, ... sum0,> =<a, ; ... 85> + <b,, ... b>
<carryl, suml, ...sumly>=<a ... 8>+ <b; ... by>+1.
= |t can be realized by
= Two conditional sum adders CSA,,
= One n/2-bit select circuit sel,,
= One 1-bit select circuit sel;

» Letn =2k,

BF - ES - 48-

24

Conditional Sum Adder —recursive definition

b(2%-1 ... 0) a(21 ... 0)

CSA,, =

carryl sum1(21 ... 0) carry0 sum0(2%1 ... 0)

BF - ES - 49-

Conditional Sum Adder —recursive definition

b(2k-1 ... 21y a(2k-1 ... 2k b(2k1-1 ... 0) a(2x1-1...0)
CSAz 1 CSA, .,
high_carry high_sum1 high_sum0 low_carry
h (21-1...0) (2k1-1...0)
[high_carry0 low_arryl
I Y
sel, T sely, 4
W | | | |
| | l
I I
k_

carrylcarry0 sum1(2-1 ... 2k1) sumQ(2%-1 ... 2«1 sumil(2-1 ... 0) sumoO(2k1-1 ... 0)

BF - ES - 50-

25

CSA,

b(0)a(0) b(0)a(0) b(0)a(0)
or not and exor
‘ ‘ l)
{ T
carryl suml(0) carry0 sumoO(0)
BF - ES - 51-
sely,
in1(2%-1 ... 0) iN0(2-1 ... 0)
sell
SeIZk sel0
outl(2k-1 ... 0) out0(2k-1 ... 0)
in1(2k-1 ... 2k1) in0(2K-1 ... 2%1) in1(2<-1 ... 0) inOiZk'l-l .. 0)
sell
Sel2k—1 Se|2k-1 sel0

| |

out1(2k-1 ... 2k1) outo(2k-1 ... 2k1)

BF - ES

outl(2k-1 ... 0)

1
outo(21-1 ... 0)

- 52-

sel;

in1(0) iN0(0) in1(0) inO(O)

sell
MUX MUX — sel0
out1(0) out0(0)
BF - ES - 53-
Recursive description of sel,,
in1(2%1 ... 0) iN0(2%-1 ... 0)
sell
SeIZk selo

outl(2k-1 ... 0) out0(2k-1 ... 0)

ENTITY select_2_power_k IS

GENERIC(k
PORT(in0O
inl
sel0 :
sell
outO :
outl :
END select_2_p

BF - ES

: natural);
: IN std_logic_vector((2**k)-1 DOWNTO 0);
: IN std_logic_vector((2**k)-1 DOWNTO 0);

IN std_logic;

: IN std_logic;

OUT std_logic_vector((2**k)-1 DOWNTO 0);

OUT std_logic_vector((2**k)-1 DOWNTO 0));
ower_K ;

- 54-

27

ARCHITECTURE netlist OF select 2 power k IS

COMPONENT mux
PORT (m1, mO, sel : IN std_logic; res : OUT std_logic);

END COMPONENT;

COMPONENT select_2_power_k

GENERIC(k : natural);

PORT(inO : IN std_logic_vector(2**k-1 DOWNTO 0);
inl : IN std_logic_vector(2**k-1 DOWNTO 0);
sel0 : IN std_logic;
sell : IN std_logic;
outO : OUT std_logic_vector(2**k-1 DOWNTO 0);
outl : OUT std_logic_vector(2**k-1 DOWNTO 0));

END COMPONENT;

BF - ES - 55-

in1(0) in0(0) in1(0) in0(O)

sell
MUX J MUX —— sel0
out1(0) out0(0)
EEGIN
basisblock: IF k = 0O GENERATE
-- Erzeuge sel_1
mux1l : mux
PORT MAP(in1(0), in0(0), sell, outl(0));
mux0 : mux
PORT MAP(in1(0), in0(0), sel0, out0(0));
END GENERATE;
- 56 -

28

in1(2%1 ... 2¢1) in0(2|'<-1 L02KY) n1(2k1l ... 0) inOiZk'l—l .. 0)

sell

- I

[| [|
I I | | | I
] |

out1(2k-1 ... 2k1) outo(2k-1 ... 2k1) outl(2k-1 ... 0) outo(2k1-1 ... 0)

recursion: |IF k > 0 GENERATE
sel_high : select_2_power_k
GENERIC MAP(k => k-1)
PORT MAP (in0 => in0(2**k-1 DOWNTO 2**(k-1)),
inl => inl1(2**k-1 DOWNTO 2**(k-1)),
sel0 => sel0, sell => sell,
out0 => out0(2**k-1 DOWNTO 2**(k-1)),
outl => outl(2**k-1 DOWNTO 2**(k-1)));
sel_low : select_2 power_k
GENERIC MAP(k => k-1)
PORT MAP (in0 => in0(2**(k-1)-1 DOWNTO 0),
inl => inl1(2**(k-1)-1 DOWNTO 0),
sel0 => sel0, sell => sell,
out0 => out0(2**(k-1)-1 DOWNTO 0),
outl => outl(2**(k-1)-1 DOWNTO 0));
END GENERATE;
END netlist;

- 57-
Recursive description of CSA,,
b(2‘<-]I ... 0) a(2k-1 ... 0)
CSA,
carryl sum1(2k-1 ... 0) carry0 sumO(2k-1 ... 0)
ENTITY csa_2_power_k IS
GENERIC (k : natural);
PORT (a : IN std_logic_vector(2**k-1 DOWNTO 0);
b : IN std_logic_vector(2**k-1 DOWNTO 0);
sum0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carry0 : OUT std_logic;
suml : OUT std_logic_vector(2**k-1 DOWNTO 0);
carryl : OUT std_logic);
END csa_2_ power_k;
BF -ES - 5g-

29

ARCHITECTURE csa_netlist OF csa_2 power_k 1S

COMPONENT and2

PORT (a, b

: IN std_logic; y : OUT std_logic);

END COMPONENT ;

COMPONENT xor2

PORT (a, b

- IN std_logic; y : OUT std_logic);

END COMPONENT;

COMPONENT or2

PORT (a, b

: IN std_logic; y : OUT std_logic);

END COMPONENT ;

COMPONENT inv
IN std_logic; vy : OUT std_logic);

PORT (a :

END COMPONENT;

BF - ES - 59-
COMPONENT select_2_power_k
GENERIC (k : natural);
PORT(in0O : IN std_logic_vector(2**k-1 DOWNTO 0);
inl : IN std_logic_vector(2**k-1 DOWNTO 0);
sel0 : IN std_logic;
sell : IN std_logic;
outO : OUT std_logic_vector(2**k-1 DOWNTO 0);
outl : OUT std_logic_vector(2**k-1 DOWNTO 0));
END COMPONENT ;
COMPONENT csa_2_power_k
GENERIC (k : natural);
PORT(a : IN std_logic_vector(2**k-1 DOWNTO 0);
b : IN std_logic_vector(2**k-1 DOWNTO 0);
sum0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carryO : OUT std_logic;
suml : OUT std_logic_vector(2**k-1 DOWNTO 0);
carryl : OUT std_logic);
END COMPONENT ;
BF - ES - 60-

30

b(0) a(0) b(0) a(0) b(0) a(0)
’ or ‘ ’ not ‘ ’ and ’ exor‘
‘ ‘ [Jt
| T
carryl sum1(0) carry0 sumo0(0)
BEGIN
one_bit: IF k = O GENERATE
SIGNAL intO0 : std_logic;
BEGIN
exor_cell : xor2
PORT MAP(b(0), a(0), int0);
sum0(0) <= intO;
inv_cell : inv
PORT MAP(intO, suml1(0));
and_cell : and2
PORT MAP(b(0), a(0), carry0);
or_cell : or2
PORT MAP(b(0), a(0), carryl);
END GENERATE;
BF - ES - 61-
b(2k-1 ... 21y a(2k-1 ... 2k b(2k1-1 ... 0) a(2x1-1...0)
CSAx1 CSA, 1
high_carry high_sum1 high_sumo0 low_carry
- (2%1-1...0) (211 ...0)
[high_carry0 low_[carryl

‘sell‘ ﬂ i selyy , i T

suml(2k-1 ... 0)

carrylcarry0 suml(2%-1 ... 21 sumO(2k-1 ... 2x1) sum0(2k1-1 ... 0)

BF - ES - 62-

more_bit: IF k > O GENERATE
SIGNAL high_sumO : std_logic_vector(2**(k-1)-1 DOWNTO 0);
SIGNAL high_suml : std_logic_vector(2**(k-1)-1 DOWNTO 0);
SIGNAL high_carry0 : std_logic_vector(O DOWNTO 0);
SIGNAL high_carryl : std_logic_vector(0O DOWNTO 0);
SIGNAL carry_outO : std_logic_vector(0O DOWNTO 0);
SIGNAL carry outl : std_logic_vector(0O DOWNTO 0);
SIGNAL low_carryO : std_logic;
SIGNAL low_carryl : std_logic;
BEGIN
csa_high : csa_2_power_k
GENERIC MAP(k => k-1)
PORT MAP(a => a(2**k-1 DOWNTO 2**(k-1)),
b => b(2**k-1 DOWNTO 2**(k-1)),
sumO0 => high_sumO, carryO => high_carry0(0),
suml => high_suml, carryl => high_carry1(0));
csa_low : csa_ 2 power_k
GENERIC MAP(k => k-1)
PORT MAP(a => a(2**(k-1)-1 DOWNTO 0),
b => b(2**(k-1)-1 DOWNTO 0),
sum0 => sum0(2**(k-1)-1 DOWNTO 0), carryO => low_carryoO,

suml => suml(2**(k-1)-1 DOWNTO 0), carryl => low_carryl);

- 63 -
sel_sum : select_2 power_k
GENERIC MAP(k => k-1)
PORT MAP(inO => high_sumO, inl => high_suml,
sel0 => low_carry0O, sell => low_carryl,
out0 => sum0(2**k-1 DOWNTO 2**(k-1)),
outl => suml(2**k-1 DOWNTO 2**(k-1)));
sel_carry : select_2_power_k
GENERIC MAP (k => 0)
PORT MAP (inO => high_carryO, inl => high_carryl,
sel0 => low_carryO, sell => low_carryl,
out0 => carry_out0O, outl => carry_outl);
carry0 <= carry_out0(0);
carryl <= carry_outl(0);
END GENERATE;
END csa_netlist;
BF - ES - 64-

32

VHDL: Evaluation

= Hierarchical specification by entities / architectures /
components, (procedures and functions)

* no nested processes,

» No specification of non-functional properties,
» No object-orientation,

= Static number of processes,

» Complicated simulation semantics,

= May be too low level for initial, abstract specification of
very large systems.

= Mainly used for hardware generation (but not
necessarily!).

BF - ES - 65-

(Other) Languages and Models

= UML (Unified Modelling Language) [Rational 1997]

“systematic” approach to support the first phases of the
design process

= UML 1.xx not designed for embedded systems
UML 2.xx supports real-time applications

= several diagram types included
9 (UML 1.4)
13 (UML 2.0)

in particular variants of
StateCharts, MSCs, Petri Nets (called acticity diagrams)

BF - ES - 66 -

SDL

» Language designed for specification of distributed systems.
» Dates back to early 70s,
» Formal semantics defined in the late 80s,

» Defined by ITU (International Telecommunication Union):
Z.100 recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

BF - ES . 67-

SDL

» Provides textual and graphical formats to please all users,

= Just like StateCharts, it is based on the CFSM model of
computation; each FSM is called a process,

= However, it uses message passing instead of shared
memory for communications,

= SDL supports operations on data.

BF - ES - 68-

34

SDL-representation of FSMs/processes

¢ i‘ V(B)(€)(b)(E)" state
| R T T Y
g [W[i< [[kg input
ir){ S | : D | i > | i > output
B) c JL Db)L E JLA JLA)
BF - ES .

Operations on data

= Variables can be declared locally for processes.
= Their type can be predefined or defined in SDL itself.
= SDL supports abstract data types (ADTs). Examples:

DCL & ‘ Counter := Counter + 3; ‘

Counter Integer; Y
Date String; /_,-/“‘\\
' < Counter >

| l |

(1:10) (11;30) ELfE

l

BF - ES

- 70-

35

Communication among SDL-FSMs

= Communication between FSMs (or ,processes") is based
on message-passing, assuming a potentially indefinitely
large FIFO-queue.

» Each process
fetches next entry

process 1 “ _ from FIFO’
< ¥) | » checks if input
J Y, \ process 3 fas
Z— | r—e enables transition,

S « if yes: transition
Drocess2%‘ (T — takes plaCe,
' — e if no: input is ignored
(exception: SAVE-
mechanism).

BF - ES - 71 -

Process interaction diagrams

= Interaction between processes can be described in
process interaction diagrams (special case of block
diagrams).

= In addition to processes, these diagrams contain
channels and declarations of local signals.

BLOCK B1
[A.B]
process P1 process P2
Swi1
Signal A,B;
Sw2 |[A]
Y
BF - ES S 72-

36

Designation of recipients

. Through process
identifiers:
Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

. Explicitly:
By including the
channel name.
Implicitly:
If signal names imply
channel names (B —
Swl)

BF - ES

Counter
TO OFFSPRING

Counter
Via Swl
| process P1

sw2 [[A)

[A,B] |
| » process P2 |
Sw1

- 73-

Hierarchy in SDL

» Process interaction diagrams can be included in blocks.
The root block is called system.

Processes cannot contain other

Block B
c2 Cc4
B1 > B2 -—>
y <3
System S
c
8|
BF -ES

processes, unlike in StateCharts.
- 74 -

37

Application: description of network protocols

System
|Processor A | ‘Router | ‘Pmcessor B ‘ Processor C ‘
ct Pt e
C3
Block Processor A Block Processor B Block Processor C
layer—n Block Router layer—n layer—n

q\ \l/ layer-2 4\ \L ﬁ\ \L
! ! b b

layer—1 layer—1 layer—1 layer—1
BF - ES - 75-
Java

Java 2 Micro Edition (J2ME)

CardJava

Real-time specification for Java (JSR-1), see
Ilwww.rtj.org

SystemC

Attempts to describe software and hardware in the same
language. Easier said than implemented.
Various C dialects used for hardware description.

BF - ES - 76-

38

Verilog

= HW description language competing with VHDL
= More popular in the US (VHDL common in Europe)

SystemVerilog
= Additional language elements for modeling behavior

BF - ES - 77 -

SpecC [Gajski, Domer et. al. 2000]

= SpecC is based on the clear separation between
communication and computation. Enables ,plug-and-play”
for system components; models systems as hierarchical
networks of behaviors communicating through channels

BF - ES . 78-

39

Many other languages

= Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.

= Chill: Designed for telephone exchange stations.
Based on PASCAL.

= |EC 60848, STEP 7:
Process control languages using graphical elements

BF - ES - 79-

Other languages (2)

» LOTOS, Z: Algebraic specification languages

= Silage: functional language for digital signal processing.

» Rosetta: Efforts on new system design language

= Esterel: reactive language; synchronous;
all reactions are assumed to be in 0 time;
communication based on ("instantaneous") broadcast;
IlIwww.esterel-technologies.com

BF - ES - 80-

40

Language Comparison

Behavioral Structural ~Programming Exceptions Dynamic
Hierarchy Hierarchy Language Supported Process
Language Elements Creation
StateCharts + - - + -
VHDL + + + g -
SpecCharts + - + + -
SDL +- +- +- - +
Petri nets - - - - +
Java + - + + +
SpecC + + + + +
SystemC + + + -(2.0 -(2.0)
ADA + - + + +
BF -ES - 81-

41

