
1

- 1 -BF - ES

Embedded Systems 10

- 2 -BF - ES

Project: Ignition Controller

2

- 3 -BF - ES

Project: Ignition Controller

- 4 -BF - ES

Project: Ignition Controller

Due: December 11, 2008

3

- 5 -BF - ES

Overview of simulation

Initialization

End of simulation

Assign new values
to signals

Update
current time

Evaluate processes

Resume processes

REVIEW

- 6 -BF - ES

Initialization

At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.
An initial value is assigned to each signal.

Taken from declaration, if specified there, e.g.,
• signal s : std_ulogic := `0`;

Otherwise: First value in enumeration for enumeration based data types, e.g.
• signal s : std_ulogic

with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
⇒ initial value is `Ù`

This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

Initialization phase executes each process exactly once (until it suspends).
During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.
If process stops at „wait for“-statement, then update process activation list –
more details later.
After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:

Time tnext of the next simulation cycle = earliest of
1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

REVIEW

4

- 7 -BF - ES

Signal assignment phase –
first part of step

Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:
tcurr = tnext
This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.
For all (s, v, tcurr) in transaction list:

Remove (s, v, tcurr) from transaction list.
s is set to v.

For all processes pi which wait on signal s:
Insert (pi, tcurr) in process activation list.

Similarly, if condition of „wait until“-expression changes
value.

REVIEW

- 8 -BF - ES

Process execution phase –
second part of step (1)

Resume all processes pi with entries (pi, tcurr)
in process activation list.
Execute all activated processes „in parallel“ (in fact: in arbitrary
order).
Signal assignments

are collected in transaction list (not executed immediately!).
Examples:

• s <= a and b;
– Let v be the conjunction of current value of a and current value

of b.
– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;
– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

Processes are executed until wait statement is encountered.
If process pi stops at „wait for“-statement, then update process
activation list:

Example:
• pi stops at „wait for 20 ns;“
• Insert (pi, tcurr + 20 ns) into process activation list

REVIEW

5

- 9 -BF - ES

Process execution phase –
second part of step (2)

If some process reaches last statement and
does not have a sensitivity list and
last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

When all processes have stopped, the time of the next
simulation cycle tnext is calculated:

Time tnext of the next simulation cycle = earliest of
1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

Stop if tnext = time’high and transaction list and process
activation list are empty.

REVIEW

- 10 -BF - ES

Delta delay -
Simulation of an RS-Flipflop

entitiy RS_Flipflop is
port (R, S : in std_logic;

Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
begin
process (R,S,Q,nQ)
begin

Q := R nor nQ;
nQ := S nor Q;

end process;
end one;0ns 0ns+δ 0ns+2δ

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0ns 0ns+δ 0ns+2δ

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0001

1100

0000

0111

1st δ

2nd δ

δ cycles reflect the fact that no
real gate comes with zero delay.
δ cycles reflect the fact that no
real gate comes with zero delay.

REVIEW

6

- 11 -BF - ES

„Write-write-conflicts“

Case 1:
Write-write-conflicts are restricted to
the same process
(i.e. they occur inside the same
process)

Then the second signal assignment
overwrites the first one.
This is the only case of „non-concurrency“
of signal assignments
Note that writing to different signals
occurs concurrently, however!

signal s : bit;

…
p : process

begin

…
s <= ‘0‘;

…
s <= ‘1‘;

wait for 5 ns;

end process p;

REVIEW

- 12 -BF - ES

„Write-write-conflicts“

Case 2:
Write-write-conflicts between different
processes (explicit or implicit processes)

If there is no „resolution function“ for the data
type dt, then writing the same signal by different
processes in the same step is forbidden.
If there is a resolution function, then the
resolution function computes the value of s at
time tcurr:

• Value for s in the current step is computed
for each process separately,

• „resolution function“ for different values is
used to compute final result.

In the following:
Data type std_ulogic with resolution function
⇒ data type std_logic

signal s : dt;
…
s<= v1;

…
p : process

begin

…
s <= v2;

…
end process p;

q : process

begin

…
s <= v3;

…
end process q;

REVIEW

7

- 13 -BF - ES

Multi-valued logic and
standard IEEE 1164

How many logic values for modeling?
Two ('0' and '1') or more?
If real circuits have to be described, some abstraction of
the resistance (inversely-related to the strength) is
required.
⇒ We introduce the distinction between:

the logic level (as an abstraction of the voltage) and
the strength (as an abstraction of the current drive capability) of a
signal.

Both logic level and strength are encoded in logic values.

REVIEW

- 14 -BF - ES

1 signal strength

Logic values '0' and '1'.
Both of the same strength.
Encoding false and true, respectively.

No meaningful “resolution function” possible, if `0` and
`1` are written to the same signal at the same time.

REVIEW

8

- 15 -BF - ES

2 signal strengths (1)

Many subcircuits can be
effectively disconnected
from the rest of the
circuit (they provide
„high impedance“
values to the rest of the
circuit).
Example: subcircuits
with tri-state outputs.

We introduce signal value 'Z', meaning „high impedance “We introduce signal value 'Z', meaning „high impedance “

Example: Tristate NOR
VDD

GROUND

A

B

A B

C

ENABLE

ENABLE

ENABLE = `0`
⇒ C is disconnected
from the rest of the
circuit

REVIEW

- 16 -BF - ES

2 signal strengths (2)

We introduce an operation #, which generates the
effective signal value whenever two signals are
connected by a wire (“resolution”).
#('0','Z')='0'; #('1','Z')='1'; '0' and '1' are „stronger“ than 'Z'

1 strength

According to the partial order
in the diagram, # returns the
larger of the two arguments.

In order to define #('0','1'), we
introduce 'X', denoting an
undefined signal level.
'X' has the same strength as '0'
and '1'.

According to the partial order
in the diagram, # returns the
larger of the two arguments.

In order to define #('0','1'), we
introduce 'X', denoting an
undefined signal level.
'X' has the same strength as '0'
and '1'.

REVIEW

9

- 17 -BF - ES

3 signal strengths
Current set of values insufficient for describing real circuits:

Depletion transistor (resistor) contributes a weak value to be
considered in the #-operation for signal A

Introduction of 'H', denoting a weak signal of the same level
as '1'.
#('H', '0')='0'; #('H,'Z') = 'H'

Depletion transistor (resistor) contributes a weak value to be
considered in the #-operation for signal A

Introduction of 'H', denoting a weak signal of the same level
as '1'.
#('H', '0')='0'; #('H,'Z') = 'H'

Example:
nMOS-Inverter

I

REVIEW

- 18 -BF - ES

3 signal strengths

There may also be weak
signals of the same level as '0'

Introduction of 'L', denoting
a weak signal of the same
level as '0':
#('L', '0')='0'; #('L,'Z') = 'L';

Introduction of 'W',
denoting a weak signal of the
same level as 'X':
#('L', 'H')='W'; #('L,'W') = 'W';

reflected by the partial order
shown.

REVIEW

10

- 19 -BF - ES

IEEE 1164

VHDL allows user-defined value sets.
⇒ Each model could use different value sets (unpractical)
⇒ Definition of standard value set according to standard

IEEE 1164:

{'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}
First seven values as discussed previously.
'U': un-initialized signal; used by simulator to initialize all
not explicitly initialized signals:
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
'-': is used to specify don’t cares:

Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;
‘-’ may be replaced by arbitrary value by synthesis tools.

REVIEW

- 20 -BF - ES

Outputs tied together

In hardware, connected outputs can be used:

bus
'Z' 'Z' 'h''0'

resolved signal
unresolved
signals

Modeling in VHDL: resolution functions
type std_ulogic is ('U', 'X','0', '1', 'Z', 'W', 'L', 'H', '-');
subtype std_logic is resolved std_ulogic;

Modeling in VHDL: resolution functions
type std_ulogic is ('U', 'X','0', '1', 'Z', 'W', 'L', 'H', '-');
subtype std_logic is resolved std_ulogic;

outputs

11

- 21 -BF - ES

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std_ulogic_vector) return std_logic is
variable result: std_ulogic:='Z'; --weakest value is default
begin
if (s'length=1) then return s(s'low) --no resolution
else for i in s'range loop
result:=resolution_table(result,s(i))

end loop
end if;
return result;

end resolved;

- 22 -BF - ES

Resolution function for IEEE 1164

constant resolution_table : stdlogic_table := (
--U X 0 1 Z W L H –
('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), --| U |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), --| X |
('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), --| 0 |
('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), --| 1 |
('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), --| Z |
('U', 'X', '0', '1', 'W', 'W', 'W', 'H', 'X'), --| W |
('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), --| L |
('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), --| H |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') --| - |
);

12

- 23 -BF - ES

Inertial and transport delay model

Signal assignment:

signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
waveform_element ::=

value_expression [after time_expression]

delay_mechanism ::=
transport | [reject time_expression] inertial

Example:
Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

- 24 -BF - ES

Inertial and transport delay model

Example for signal assignment:
outp <= not inp after 10 ns;

outp??

inp

5 10 15 20 25 30 35

outp??

13

- 25 -BF - ES

Two delay models in VHDL:

InertialInertial delaydelay („träge Verzögerung“)
Transport Transport delaydelay („nichtträge Verzögerung“)

Inverter
Input Output

Inertial and transport delay model

Inertial delay model is motivated by the fact that physical
gates absorb short pulses (spikes) at their inputs (due to
internal capacities)

- 26 -BF - ES

… is the default model!

Allows to specify the
delay of a gate or
operation

Absorbs pulses at the
inputs which are shorter
than the delay specified
for the gate / operation

Inverter
Input Output

-- INERTIAL is the default
Output <= NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Inertial delay model

14

- 27 -BF - ES

Inverter
Input Output

-- TRANSPORT must be specified
Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Transport delay model

Allows to specify the delay of a
gate or operation

Transmits all pulses at the
inputs ideally

- 28 -BF - ES

entity DELAY is

end DELAY;

architecture RTL of DELAY is

signal A, B, X, Y: bit;
begin

p0: process (A, B)
begin

Y <= A nand B after 10 ns;
X <= transport A nand B after 10 ns;

end process;

p1: process
begin

A <= '0', '1' after 20 ns, '0'
after 40 ns, '1' after 60 ns;

B <= '0', '1' after 30 ns, '0'
after 35 ns, '1' after 50 ns;

wait for 80 ns;
end process

end RTL;

0 100 200

A
B
X
Y

[ns]

Inertial and transport delay model

15

- 29 -BF - ES

Semantics of transport delay model

Restriction (at first):
Do not consider resolution etc., i.e., assignments to a fixed
signal only made in one process

Signal assignments change transaction list.
Before transaction (s, t1, v1) is inserted into transaction
list, all transactions in the transaction list (s, t2, v2) with t2
≥ t1 are removed from transaction list.

- 30 -BF - ES

Example for transport delay model

Transaction list:
At 5ns:
(outp, 25ns, `0`)
At 10 ns:
(outp, 22.5ns, `1`), (outp, 25ns, `0`)
Remove (outp, 25ns, `0`)!
⇒
(outp, 22.5ns, `1`)

Inverter
inp outp

inv : process(inp)

begin

if inp=‘1‘ then

outp <= transport ‘0‘ after 20 ns;

elsif inp=‘0‘ then

outp <= transport ‘1‘ after 12.5 ns

end if;

end process inv;

outp

inp

5 10 15 20 25 30 35

16

- 31 -BF - ES

Semantics of inertial delay model

Semantics for more general version of inertial delay
statement:

Inertial delay absorbs pulses at the inputs which are shorter than
the delay specified for the gate / operation.
Key word reject permits absorbing only pulses which are shorter
than specified delay:

• Example:
– outp <= reject 3 ns inertial not inp after 10 ns;
– Only pulses smaller than 3 ns are absorbed.
– outp <= reject 10 ns inertial not inp after 10 ns;

and
outp <= not inp after 10 ns;
are equivalent.

- 32 -BF - ES

Semantics of inertial delay model

Same restriction as for transport model (at first):
Do not consider resolution etc., i.e., assignments to a fixed signal only
made in one process

Rule 1 as for transport delay model:
Before transaction (s, t1, v1) is inserted into transaction list, all
transactions in the transaction list (s, t2, v2) with t2 ≥ t1 are removed
from transaction list.
Rule 2 removes also some transactions with times < t1:

Suppose the time limit for reject is rt.
Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are
removed.
Exception:
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately
before (s, t1, v1) which also assign value v1 to s, then these transactions
are preserved.

17

- 33 -BF - ES

Example

Transaction list until „wait for 15 ns“:
(o1, 0ns, `0`), (o1, 5ns, `0`), (o1, 15ns, `1`), (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 0ns, `0`), (o2, 5ns, `0`), (o2, 15ns, `1`), (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

Transaction list when process is reactivated at time 15ns:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

…

process

begin

o1 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

-- same signal assignment for o2

o2 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial ‘1‘ after 25 ns;

wait;

end process;

- 34 -BF - ES

Example

At time 15ns:
insert transaction (o2, 40ns, `1`).
Remove transactions with time stamp ≥ 40ns.

Results in preliminary transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

…

process

begin

o1 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

-- same signal assignment for o2

o2 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial ‘1‘ after 25 ns;

wait;

end process;

18

- 35 -BF - ES

process

begin

o1 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

-- same signal assignment for o2

o2 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial ‘1‘ after 25 ns;

wait;

end process;

Example

Results in preliminary transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)
Rule 2:

(o2, 25ns, `1`), (o2, 30ns, `1`) are preserved,
(o2, 20ns, `0`), is removed.

Resulting transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

Rule 2:
Transactions for signal o2 with
time stamp in the intervall (40ns –
22ns, 40ns) = (18ns, 40ns) are
removed.
Exception:
If there is in (18ns, 40ns) a
subsequence of transactions for
o2 immediately before
(o2, 40ns, `1`) which also assign
value `1` to o2, then these
transactions are preserved.

- 36 -BF - ES

process

begin

o1 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

-- same signal assignment for o2

o2 <= transport ‘0‘, ‘0‘ after 5ns, ‘1‘ after 15 ns, ‘0‘ after 20ns,

‘1‘ after 25 ns, ‘1‘ after 30ns, ‘1‘ after 45 ns,

‘0‘ after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial ‘1‘ after 25 ns;

wait;

end process;

Example

Resulting wave form:

o1

o2

5 10 15 20 25 30 35 40 45 50 55

19

- 37 -BF - ES

Inertial and transport delay model

For signal assignments of form
Inpsig <= ´0´ after 5 ns, ´1´after 10 ns, ´0´ after 15 ns, ´1´
after 20 ns;
only the first assignment follows the inertial delay model.

If there are assignments to a signal s in several processes
p1, …, pn:

Insert entries of form (sPi, t, v) into transaction list („for each
signal driver separate entries“)
Apply rules for inertial/transport delay model as defined above
(separately) to signals sPi.
If there are several entries (sPi, tcurr, vi) in current assignment
phase:

• Apply resolution function to compute resulting value for
assignment to s.

- 38 -BF - ES

Some additional language elements

VHDL supports usual elements of imperative
programming languages, e.g.,

Various data types
• scalar data types like integers, reals, enumeration types,

physical types,
• arrays,
• pointers,
• records,
• files

Various control structures (if, case, when … else, with … select
etc.)
Loops (loop, for, while)
Functions and procedures
…

20

- 39 -BF - ES

Functions and procedures

Apart from entities / architectures there are also
functions and procedures in the usual (software) sense.
Functions are typically used for providing conversion
between data types or for defining operators on user-
defined data types.
Procedures may have parameters of directions in, out
and inout.

in comparable to call by value,
out for providing results,
inout comparable to call by reference.

- 40 -BF - ES

architecture RTL of TEST is
function BOOL2BIT (BOOL: boolean) return bit is
begin

if BOOL then return '1'; else return '0'; end if;
end BOOL2BIT;

procedure EVEN_PARITY (
signal D: in bit_vector(7 downto 0);
signal PARITY : out bit) is

variable temp : bit;
begin

....
end;

signal DIN : bit_vector(7 downto 0);
signal BOOL1 : boolean;
signal BIT1, PARITY : bit;

begin
do_it: process (BOOL1, DIN)
begin

BIT1 <= BOOL2BIT(BOOL1);
EVEN_PARITY(DIN, PARITY);

end process;
....

end;

Example

21

- 41 -BF - ES

Parameterized hardware

Conditional component instantiation with if … generate
construct.
Iterative component instantiation with for … generate
construct.
Parameterized design with generic parameters.

- 42 -BF - ES

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

SOSI T(6) T(5) T(4) T(3) T(2) T(1) T(0)

entity SHIFT8 is
port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);
end SHIFT8;

Example: 8-bit shift register

22

- 43 -BF - ES

architecture RTL1 of SHIFT8 is

begin

end RTL1;

component DFF
port (RSTn, CLK, D: in std_logic;

Q : out std_logic);
end component;
signal T: std_logic_vector(6 downto 0);

bit7 : DFF
port map (RSTn => RSTn, CLK => CLK,

D => SI, Q => T(6));
bit6 : DFF

port map (RSTn => RSTn, CLK => CLK,
D => T(6), Q => T(5));

bit5 : DFF
port map (RSTn, CLK, T(5), T(4));

...
bit1 : DFF

port map (RSTn, CLK, T(1), T(0));
bit0 : DFF

port map (RSTn, CLK, T(0), S0);

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

SOSI T(6) T(5) T(4) T(3) T(2) T(1) T(0)

- 44 -BF - ES

architecture RTL2 of SHIFT1024 is

begin

end RTL2;

component DFF
port (RSTn, CLK, D: in std_logic;

Q : out std_logic);
end component;
signal T: std_logic_vector(1022 downto 0);

g0: for i in 1023 downto 0 generate
g1: if (i = 1023) generate

bit1023 : DFF port map (RSTn,CLK,SI,T(1022));
end generate;

g2: if (i>0) and (i<1023) generate
bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

end generate;
g3: if (i=0) generate

bit0 : DFF port map (RSTn,CLK,T(0),S0);
end generate;

end generate;

Example: 1024-bit shift register

23

- 45 -BF - ES

entity SHIFTn is
generic (n : positive);
port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);
end SHIFTn;

architecture RTL3 of SHIFTn is

begin

end RTL3;

component DFF
port (RSTn, CLK, D: in std_logic;

Q : out std_logic);
end component;
signal T: std_logic_vector(n-2 downto 0);

g0: for i in n-1 downto 0 generate
g1: if (i = n-1) generate

bit_high : DFF port map (RSTn,CLK,SI,T(n-2));
end generate;

g2: if (i>0) and (i<n-1) generate
bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

end generate;
g3: if (i=0) generate

bit0 : DFF port map (RSTn,CLK,T(0),S0);
end generate;

end generate;

Example: n-bit shift register

- 46 -BF - ES

…
component SHIFTn is
generic (n : positive);
port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);
end component;

Example: n-bit shift register

Component instantiation

…
begin
…
Shift32comp : SHIFTn
generic map (n => 32)
port map(RSTn => …,

CLK => …,
SI => …,
SO => …);

…
end;

24

- 47 -BF - ES

Recursive descriptions

If parametrized hardware is described recursively, then
generic-parameters,
if … generate-constructs for conditional component instantiation
and
recursive component instantiation are used.

Example: Conditional Sum Adder

- 48 -BF - ES

Conditional Sum Adder
A conditional sum adder CSAn computes both sum and
sum + 1 of two operand, i.e., it implements a Boolean
function
+n : B2n → B2n+2 ,
(an-1, ..., a0 , bn-1, ..., b0) →

(carry1, sum1n-1, …, sum10, carry0, sum0n-1, ..., sum00) with
<carry0, sum0n ... sum00> = <an-1 ... a0> + <bn-1 ... b0>
<carry1, sum1n ... sum10> = <an-1 ... a0> + <bn-1 ... b0>+1.

It can be realized by
Two conditional sum adders CSAn/2
One n/2-bit select circuit seln/2
One 1-bit select circuit sel1

Let n = 2k .

25

- 49 -BF - ES

Conditional Sum Adder – recursive definition

b(2k-1 … 0) a(2k-1 … 0)

sum1(2k-1 … 0) sum0(2k-1 … 0)carry1 carry0

CSA2k = …

- 50 -BF - ES

Conditional Sum Adder – recursive definition
b(2k-1 … 2k-1) a(2k-1 … 2k-1)

sum1(2k-1 … 2k-1) sum0(2k-1 … 2k-1)

high_carry1

high_carry0

CSA2k-1

b(2k-1-1 … 0) a(2k-1-1 … 0)

sum1(2k-1 … 0) sum0(2k-1-1 … 0)

low_carry1

low_carry0

CSA2k-1

sel2k-1

high_sum1
(2k-1-1 … 0)

high_sum0
(2k-1-1 … 0)

sel1

carry1carry0

26

- 51 -BF - ES

CSA1

exornotor and

a(0)b(0)a(0)b(0)a(0)b(0)

sum0(0)sum1(0) carry0carry1

- 52 -BF - ES

sel2k

out1(2k-1 … 0) out0(2k-1 … 0)

sel1
sel2k

in1(2k-1 … 0) in0(2k-1 … 0)

sel0

=

out1(2k-1 … 2k-1) out0(2k-1 … 2k-1)

Sel2k-1

in1(2k-1 … 2k-1) in0(2k-1 … 2k-1)

out1(2k-1-1 … 0) out0(2k-1-1 … 0)

sel1
Sel2k-1

in1(2k-1-1 … 0) in0(2k-1-1 … 0)

sel0

27

- 53 -BF - ES

sel1

MUXMUX

in0(0)in1(0)

out0(0)out1(0)

in0(0)in1(0)

sel1

sel0

- 54 -BF - ES

Recursive description of sel2k

ENTITY select_2_power_k IS
GENERIC(k : natural);
PORT(in0 : IN std_logic_vector((2**k)-1 DOWNTO 0);

in1 : IN std_logic_vector((2**k)-1 DOWNTO 0);
sel0 : IN std_logic;
sel1 : IN std_logic;
out0 : OUT std_logic_vector((2**k)-1 DOWNTO 0);
out1 : OUT std_logic_vector((2**k)-1 DOWNTO 0));

END select_2_power_k ;

out1(2k-1 … 0) out0(2k-1 … 0)

sel1
sel2k

in1(2k-1 … 0) in0(2k-1 … 0)

sel0

28

- 55 -BF - ES

ARCHITECTURE netlist OF select_2_power_k IS

COMPONENT mux
PORT (m1, m0, sel : IN std_logic; res : OUT std_logic);

END COMPONENT;

COMPONENT select_2_power_k
GENERIC(k : natural);
PORT(in0 : IN std_logic_vector(2**k-1 DOWNTO 0);

in1 : IN std_logic_vector(2**k-1 DOWNTO 0);
sel0 : IN std_logic;
sel1 : IN std_logic;
out0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
out1 : OUT std_logic_vector(2**k-1 DOWNTO 0));

END COMPONENT;

...

- 56 -BF - ES

…
BEGIN

basisblock: IF k = 0 GENERATE
-- Erzeuge sel_1

mux1 : mux
PORT MAP(in1(0), in0(0), sel1, out1(0));

mux0 : mux
PORT MAP(in1(0), in0(0), sel0, out0(0));

END GENERATE;

…

MUXMUX

in0(0)in1(0)

out0(0)out1(0)

in0(0)in1(0)

sel1

sel0

29

- 57 -BF - ES

…
recursion: IF k > 0 GENERATE

sel_high : select_2_power_k
GENERIC MAP(k => k-1)
PORT MAP (in0 => in0(2**k-1 DOWNTO 2**(k-1)),

in1 => in1(2**k-1 DOWNTO 2**(k-1)),
sel0 => sel0, sel1 => sel1,
out0 => out0(2**k-1 DOWNTO 2**(k-1)),
out1 => out1(2**k-1 DOWNTO 2**(k-1)));

sel_low : select_2_power_k
GENERIC MAP(k => k-1)
PORT MAP (in0 => in0(2**(k-1)-1 DOWNTO 0),

in1 => in1(2**(k-1)-1 DOWNTO 0),
sel0 => sel0, sel1 => sel1,
out0 => out0(2**(k-1)-1 DOWNTO 0),
out1 => out1(2**(k-1)-1 DOWNTO 0));

END GENERATE;
END netlist;

out1(2k-1 … 2k-1) out0(2k-1 … 2k-1)

Sel2k-1

in1(2k-1 … 2k-1) in0(2k-1 … 2k-1)

out1(2k-1-1 … 0) out0(2k-1-1 … 0)

sel1
Sel2k-1

in1(2k-1-1 … 0) in0(2k-1-1 … 0)

sel0

- 58 -BF - ES

Recursive description of CSA2k

ENTITY csa_2_power_k IS
GENERIC (k : natural);
PORT (a : IN std_logic_vector(2**k-1 DOWNTO 0);

b : IN std_logic_vector(2**k-1 DOWNTO 0);
sum0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carry0 : OUT std_logic;
sum1 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carry1 : OUT std_logic);

END csa_2_power_k;

b(2k-1 … 0) a(2k-1 … 0)

sum1(2k-1 … 0) sum0(2k-1 … 0)carry1 carry0

CSA2k

30

- 59 -BF - ES

ARCHITECTURE csa_netlist OF csa_2_power_k IS

COMPONENT and2
PORT (a, b : IN std_logic; y : OUT std_logic);

END COMPONENT;

COMPONENT xor2
PORT (a, b : IN std_logic; y : OUT std_logic);

END COMPONENT;

COMPONENT or2
PORT (a, b : IN std_logic; y : OUT std_logic);

END COMPONENT;

COMPONENT inv
PORT (a : IN std_logic; y : OUT std_logic);

END COMPONENT;

...

- 60 -BF - ES

...
COMPONENT select_2_power_k

GENERIC (k : natural);
PORT(in0 : IN std_logic_vector(2**k-1 DOWNTO 0);

in1 : IN std_logic_vector(2**k-1 DOWNTO 0);
sel0 : IN std_logic;
sel1 : IN std_logic;
out0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
out1 : OUT std_logic_vector(2**k-1 DOWNTO 0));

END COMPONENT;

COMPONENT csa_2_power_k
GENERIC (k : natural);
PORT(a : IN std_logic_vector(2**k-1 DOWNTO 0);

b : IN std_logic_vector(2**k-1 DOWNTO 0);
sum0 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carry0 : OUT std_logic;
sum1 : OUT std_logic_vector(2**k-1 DOWNTO 0);
carry1 : OUT std_logic);

END COMPONENT;
...

31

- 61 -BF - ES

...

BEGIN
one_bit: IF k = 0 GENERATE

SIGNAL int0 : std_logic;
BEGIN

exor_cell : xor2
PORT MAP(b(0), a(0), int0);

sum0(0) <= int0;
inv_cell : inv

PORT MAP(int0, sum1(0));
and_cell : and2

PORT MAP(b(0), a(0), carry0);
or_cell : or2

PORT MAP(b(0), a(0), carry1);
END GENERATE;

...

exornotor and

a(0)b(0)a(0)b(0)a(0)b(0)

sum0(0)sum1(0) carry0carry1

- 62 -BF - ES

b(2k-1 … 2k-1) a(2k-1 … 2k-1)

sum1(2k-1 … 2k-1) sum0(2k-1 … 2k-1)

high_carry1

high_carry0

CSA2k-1

b(2k-1-1 … 0) a(2k-1-1 … 0)

sum1(2k-1 … 0) sum0(2k-1-1 … 0)

low_carry1

low_carry0

CSA2k-1

sel2k-1

high_sum1
(2k-1-1 … 0)

high_sum0
(2k-1-1 … 0)

sel1

carry1carry0

32

- 63 -BF - ES

...
more_bit: IF k > 0 GENERATE

SIGNAL high_sum0 : std_logic_vector(2**(k-1)-1 DOWNTO 0);
SIGNAL high_sum1 : std_logic_vector(2**(k-1)-1 DOWNTO 0);
SIGNAL high_carry0 : std_logic_vector(0 DOWNTO 0);
SIGNAL high_carry1 : std_logic_vector(0 DOWNTO 0);
SIGNAL carry_out0 : std_logic_vector(0 DOWNTO 0);
SIGNAL carry_out1 : std_logic_vector(0 DOWNTO 0);
SIGNAL low_carry0 : std_logic;
SIGNAL low_carry1 : std_logic;

BEGIN
csa_high : csa_2_power_k

GENERIC MAP(k => k-1)
PORT MAP(a => a(2**k-1 DOWNTO 2**(k-1)),

b => b(2**k-1 DOWNTO 2**(k-1)),
sum0 => high_sum0, carry0 => high_carry0(0),
sum1 => high_sum1, carry1 => high_carry1(0));

csa_low : csa_2_power_k
GENERIC MAP(k => k-1)
PORT MAP(a => a(2**(k-1)-1 DOWNTO 0),

b => b(2**(k-1)-1 DOWNTO 0),
sum0 => sum0(2**(k-1)-1 DOWNTO 0), carry0 => low_carry0,
sum1 => sum1(2**(k-1)-1 DOWNTO 0), carry1 => low_carry1);

...

- 64 -BF - ES

...
sel_sum : select_2_power_k

GENERIC MAP(k => k-1)
PORT MAP(in0 => high_sum0, in1 => high_sum1,

sel0 => low_carry0, sel1 => low_carry1,
out0 => sum0(2**k-1 DOWNTO 2**(k-1)),
out1 => sum1(2**k-1 DOWNTO 2**(k-1)));

sel_carry : select_2_power_k
GENERIC MAP (k => 0)
PORT MAP (in0 => high_carry0, in1 => high_carry1,

sel0 => low_carry0, sel1 => low_carry1,
out0 => carry_out0, out1 => carry_out1);

carry0 <= carry_out0(0);
carry1 <= carry_out1(0);

END GENERATE;
END csa_netlist;

33

- 65 -BF - ES

VHDL: Evaluation

Hierarchical specification by entities / architectures /
components, (procedures and functions)
no nested processes,
No specification of non-functional properties,
No object-orientation,
Static number of processes,
Complicated simulation semantics,
May be too low level for initial, abstract specification of
very large systems.
Mainly used for hardware generation (but not
necessarily!).

- 66 -BF - ES

(Other) Languages and Models

UML (Unified Modelling Language) [Rational 1997]
“systematic” approach to support the first phases of the
design process

UML 1.xx not designed for embedded systems
UML 2.xx supports real-time applications

several diagram types included
9 (UML 1.4)
13 (UML 2.0)
in particular variants of
StateCharts, MSCs, Petri Nets (called acticity diagrams)

34

- 67 -BF - ES

SDL

Language designed for specification of distributed systems.

Dates back to early 70s,

Formal semantics defined in the late 80s,

Defined by ITU (International Telecommunication Union):
Z.100 recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

- 68 -BF - ES

SDL

Provides textual and graphical formats to please all users,

Just like StateCharts, it is based on the CFSM model of
computation; each FSM is called a process,

However, it uses message passing instead of shared
memory for communications,

SDL supports operations on data.

35

- 69 -BF - ES

SDL-representation of FSMs/processes

output

input

state

- 70 -BF - ES

Operations on data

Variables can be declared locally for processes.
Their type can be predefined or defined in SDL itself.
SDL supports abstract data types (ADTs). Examples:

36

- 71 -BF - ES

Communication among SDL-FSMs

Communication between FSMs (or „processes“) is based
on message-passing, assuming a potentially indefinitely
large FIFO-queue.

• Each process
fetches next entry
from FIFO,

• checks if input
enables transition,

• if yes: transition
takes place,

• if no: input is ignored
(exception: SAVE-
mechanism).

• Each process
fetches next entry
from FIFO,

• checks if input
enables transition,

• if yes: transition
takes place,

• if no: input is ignored
(exception: SAVE-
mechanism).

- 72 -BF - ES

Process interaction diagrams

Interaction between processes can be described in
process interaction diagrams (special case of block
diagrams).
In addition to processes, these diagrams contain
channels and declarations of local signals.
Example:

,

37

- 73 -BF - ES

Designation of recipients

1. Through process
identifiers:
Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

2. Explicitly:
By including the
channel name.

3. Implicitly:
If signal names imply
channel names (B →
Sw1)

Counter
Via Sw1

Counter
TO OFFSPRING

- 74 -BF - ES

Hierarchy in SDL

Process interaction diagrams can be included in blocks.
The root block is called system.

Processes cannot contain other
processes, unlike in StateCharts.

38

- 75 -BF - ES

Application: description of network protocols

- 76 -BF - ES

Java
Java 2 Micro Edition (J2ME)
CardJava

Real-time specification for Java (JSR-1), see
//www.rtj.org

SystemC
Attempts to describe software and hardware in the same
language. Easier said than implemented.
Various C dialects used for hardware description.

39

- 77 -BF - ES

Verilog

HW description language competing with VHDL
More popular in the US (VHDL common in Europe)

SystemVerilog
Additional language elements for modeling behavior

- 78 -BF - ES

SpecC [Gajski, Dömer et. al. 2000]

SpecC is based on the clear separation between
communication and computation. Enables „plug-and-play“
for system components; models systems as hierarchical
networks of behaviors communicating through channels

40

- 79 -BF - ES

Many other languages

Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.
Chill: Designed for telephone exchange stations.
Based on PASCAL.
IEC 60848, STEP 7:
Process control languages using graphical elements

- 80 -BF - ES

Other languages (2)

LOTOS, Z: Algebraic specification languages
Silage: functional language for digital signal processing.
Rosetta: Efforts on new system design language
Esterel: reactive language; synchronous;
all reactions are assumed to be in 0 time;
communication based on ("instantaneous") broadcast;
//www.esterel-technologies.com

41

- 81 -BF - ES

Language Comparison

