
1

- 1 -BF - ES

Embedded Systems 11

- 2 -BF - ES

Overview of embedded systems design

2

- 3 -BF - ES

Embedded System Hardware

Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

- 4 -BF - ES

Many examples of such loops

Heating

Lights

Engine control

Power supply

…

Robots

Heating: www.masonsplumbing.co.uk/images/heating.jpg
Robot:: Courtesy and ©: H.Ulbrich, F. Pfeiffer, TU München

3

- 5 -BF - ES

Sensors

Processing of physical data starts with capturing this data.
Sensors can be designed for virtually every physical and
chemical quantity

including weight, velocity, acceleration, electrical current, voltage,
temperatures etc.
chemical compounds.

Many physical effects used for constructing sensors.
Examples:

law of induction (generation of voltages in an electric field),
light-electric effects.

Huge amount of sensors designed in recent years.

- 6 -BF - ES

Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig

4

- 7 -BF - ES

Charge-coupled devices (CCD) image sensors

Based on charge transfer to next pixel cellBased on charge transfer to next pixel cell

Mature technology
Medium to high-end
compact digital
cameras

- 8 -BF - ES

CMOS image sensors

Based on standard
production process
for CMOS chips,
allows integration
with other
components.

Lower power
consumption
Lower cost

low cost devices
Automotive
medical

5

- 9 -BF - ES

Artificial eyes

© Dobelle Institute

- 10 -BF - ES

Artificial eyes (2)

© Dobelle Institute

6

- 11 -BF - ES

Example: Biometrical Sensors

Example: Fingerprint sensor (© Siemens, VDE):Example: Fingerprint sensor (© Siemens, VDE):

Matrix of 256 x
256 elem.
Voltage ~
distance.
Resistance also
computed. No
fooling by
photos and wax
copies.
Carbon dust?

Integrated into ID mouse.

- 12 -BF - ES

Other sensors

Rain sensors for wiper control
(„Sensors multiply like rabbits“ [ITT automotive])

Pressure sensors

Proximity sensors

Engine control sensors

Hall effect sensors

7

- 13 -BF - ES

Standard layout of sensor systems for contin. entities

Sensor: detects/measures entity and converts it to
electrical domain

May entail ES-controllable actuation: e.g. charge transfer in
CCD

Amplifier: adjusts signal to the dynamic range of the A/D
conversion

Often dynamically adjustable gain: e.g. ISO settings at digital
cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

Sample + hold: samples signal at discrete time instants
A/D conversion: converts samples to digital domain

Sensor Amplifier
Sample

and hold

A/D

conversion

- 14 -BF - ES

Discretization of time

Vx is a sequence of values or a mapping ℤ→ ℝ

Discrete time: sample and hold-devices.
Ideally: width of clock pulse -> 0

Vx is a sequence of values or a mapping ℤ→ ℝ

Discrete time: sample and hold-devices.
Ideally: width of clock pulse -> 0

Ve is a mapping ℝ→ ℝVe is a mapping ℝ→ ℝ

8

- 15 -BF - ES

Sample and Hold

Input

Output

Clock

- 16 -BF - ES

Discretization of values: A/D-converters
1. Flash A/D converter (1)

Basic element: analog comparator

Output = ´1´ if voltage at input + exceeds that at input -.
Output = ´0´ if voltage at input - exceeds that at input +.

Idea:
Generate n different voltages by voltage divider (resistors),
e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref.
Use n comparators for parallel comparison of input voltage Vx to these
voltages.
Encoder to compute digital output.

9

- 17 -BF - ES

Discretization of values: A/D-converters
1. Flash A/D converter (2)

Parallel comparison with
reference voltage
Applications: e.g. in video
processing

- 18 -BF - ES

Discretization of values
2. Successive approximation

Key idea: binary search:
Set MSB='1'
if too large: reset MSB
Set MSB-1='1'
if too large: reset MSB-1

10

- 19 -BF - ES

Successive approximation (2)

1100

1000

1010
1011

t

V

Vx

V-

- 20 -BF - ES

Digital-to-Analog (D/A) Converters

Convert digital value to conductivity proportional to the
digital value

x3

x2

x1

x0

R

2 R

4 R

8 R

11

- 21 -BF - ES

Operational amplifier

• Use operational amplifier to convert conductivity to
voltage: V = - Vref R2 / R1

-
+

R1

R2

Vref V

- 22 -BF - ES

Digital-to-Analog (D/A) Converters (3)

-
+

R2

Vref V

x3

x2

x1

x0

R

2 R

4 R

8 R

12

- 23 -BF - ES

sigma-delta A/D converter

• Modulator generates bit stream whose density of ones
(= sliding average value) matches the analog input

• Bit rate many times higher than the final data rate

• Digital filter essentially pursues averaging over
sufficiently wide window

- 24 -BF - ES

1st order sigma-delta modulator

• Generates bit stream whose density of ones (= sliding
average) matches the analog input

13

- 25 -BF - ES

Actuators and output

• Huge variety of actuators and outputs, impossible to
represent

• Two base types:

• analogue drive (requires D/A conversion, unless
on/off sufficient)

• CRTs, speakers, electrical motors with collector

• electromagnetic (e.g., coils) or electrostatic drives

• piezo drives

• digital drive (requires amplification only)
• LEDs

• stepper motors

• relais, electromagnetic valve (if actuation slope irrelevant)

- 26 -BF - ES

Embedded System Hardware

Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

14

- 27 -BF - ES

Hardware Efficiency

Technology

[H. de Man, Keynote, DATE‘02;
T. Claasen, ISSCC99]

Operations/Watt
[MOPS/mW]

Processors
Reconfigurable Computing

hardwired (ASIC)
1

0.1

0.01

0.13µ 0.07µ

10

0.25µ0.5µ1.0µ

- 28 -BF - ES

Prescott: 90 W/cm²,
90 nm [c‘t 4/2004]

Nuclear reactor

Power density continues to get worse

15

- 29 -BF - ES

Surpassed hot (kitchen) plate …? Why not
use it?

ht
tp

://
w

w
w

.p
hy

s.
nc

ku
.e

du
.tw

/~
ht

su
/h

um
or

/fr
y_

eg
g.

ht
m

l

- 30 -BF - ES

Power and energy are related to each other

∫= dtPE

t

P

E

In many cases, faster execution also means less energy,
but the opposite may be true if power has to be increased
to allow faster execution.

E'

16

- 31 -BF - ES

Low Power vs. Low Energy Consumption

Minimizing the power consumption is important for
• the design of the power supply
• the design of voltage regulators
• the dimensioning of interconnect
• short term cooling

Minimizing the energy consumption is important due to
• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)
– very high costs of energy (solar panels, in space)

• cooling
– high costs
– limited space

• reliability
• long lifetimes, low temperatures

- 32 -BF - ES

Application Specific Circuits (ASICS)
or Full Custom Circuits

Custom-designed circuits necessary
if ultimate speed or
energy efficiency is the goal and
large numbers can be sold.

Approach suffers from
long design times,
lack of flexibility
(changing standards) and
high costs
(e.g. Mill. $ mask costs).

17

- 33 -BF - ES

Mask cost for specialized HW
becomes very expensive

[http://www.molecularimprints.com/Technology/
tech_articles/MII_COO_NIST_2001.PDF9]

Trend
towards
implementation
in Software

- 34 -BF - ES

Micro-controllers

Integrate several components of a microprocessor
system onto one chip

CPU, Memory, Timer, IO

Low cost, small packaging
Easy integration with circuits
Single-Purpose

18

- 35 -BF - ES

Example: PIC16C8X

- 36 -BF - ES

Dynamic power management (DPM)

RUN: operational
IDLE: a sw routine
may stop the CPU
when not in use, while
monitoring interrupts
SLEEP: Shutdown of
on-chip activity

RUN

SLEEPIDLE

400mW

160µW50mW

90µs

90
µs

10µs

10µs
160ms

Example: STRONGARM SA1100

Pow
er

fau
lt

sig

na
l

Power fault
signal

19

- 37 -BF - ES

Fundamentals of dynamic voltage scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):

frequency clock:
voltagesupply :

ecapacitanc load:
activity switching:
with2

f
V
C

fVCP

dd

L

ddL

α

α=

- 38 -BF - ES

Fundamentals of dynamic voltage scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):

frequency clock:
voltagesupply :

ecapacitanc load:
activity switching:
with2

f
V
C

fVCP

dd

L

ddL

α

α=

()

) than (
voltage threshhold:

 with2

ddt

t

tdd

dd
L

VV
V

VV
VCk

<

−
=τ

Delay for CMOS circuits:

Decreasing Vdd reduces P quadratically,
while the run-time of algorithms is only linearly increased
E=P x t decreases linearly
(ignoring the effects of the memory system and Vt)

20

- 39 -BF - ES

Voltage scaling: Example

Vdd[Courtesy, Yasuura, 2000]

- 40 -BF - ES

Variable-voltage/frequency example: INTEL Xscale

Fr
om

 In
te

l’s
 W

eb
 S

ite

OS should
schedule
distribution
of the
energy
budget.

21

- 41 -BF - ES

Key requirement #2: Code-size efficiency

CISC machines: RISC machines designed for run-time-,
not for code-size-efficiency
Compression techniques: key idea

- 42 -BF - ES

Code-size efficiency

Compression techniques (continued):
• 2nd instruction set, e.g. ARM Thumb instruction set:

• Reduction to 65-70 % of original code size
• 130% of ARM performance with 8/16 bit memory
• 85% of ARM performance with 32-bit memory

1110 001 01001 0 Rd 0 Rd 0000 Constant

16-bit Thumb instr.
ADD Rd #constant001 10 Rd Constant

zero extended
major
opcode minor

opcode
source=
destination

[ARM, R. Gupta]

Same approach for LSI TinyRisc, …
Requires support by compiler, assembler etc.

D
yn

am
ic

al
ly

de

co
de

d
at

ru

n-
tim

e

22

- 43 -BF - ES

Dictionary approach, two level control store
(indirect addressing of instructions)

“Dictionary-based coding schemes cover a wide range of
various coders and compressors.
Their common feature is that the methods use some kind of a
dictionary that contains parts of the input sequence which
frequently appear.
The encoded sequence in turn contains references to the
dictionary elements rather than containing these over and
over.”

[Á. Beszédes et al.: Survey of Code size Reduction Methods, Survey of Code-Size
Reduction Methods, ACM Computing Surveys, Vol. 35, Sept. 2003, pp 223-267]

- 44 -BF - ES

Key idea (for d bit instructions)

Uncompressed storage of
a d-bit-wide instructions
requires axd bits.

In compressed code, each
instruction pattern is
stored only once.

Hopefully, axb+cxd < axd.

Called nanoprogramming
in the Motorola 68000.

instruction
address

CPU

d bit

b « d bit
table of used instructions
(“dictionary”)

For each
instruction
address, S
contains table
address of
instruction.

S a

b

c ≦ 2b
small

23

- 45 -BF - ES

Cache-based decompression

Main idea: decompression whenever cache-lines are fetched
from memory.

Cache lines ↔ variable-sized blocks in memory
line address tables (LATs) for translation of instruction

addresses into memory addresses.

Tables may become large and have to be bypassed by a line
address translation buffer.

[A. Wolfe, A. Chanin, MICRO-92]

- 46 -BF - ES

Application: y[j] = ∑
i=0

x[j-i]*a[i]
∀i: 0≤i ≤ n-1: yi[j] = yi-1[j] + x[j-i]*a[i]

Key requirement #3: Run-time efficiency
-- Domain-oriented architectures -

Architecture: Example: Data path ADSP210x

n-1

Application
maps nicely
onto
architecture

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation
unit (AGU)

Address-
registers
A0, A1, A2
..
i+1, j-i+1

a
x

MR:=0;
MX:=x[n-1]; MY:=a[0];
A1:=1; A2:=n-2;
for (j:=1 to n)
{MR:=MR+MX*MY;
MY:=a[A1]; MX:=x[A2];
A1++; A2--}

24

- 47 -BF - ES

DSP-Processors: multiply/accumulate (MAC)
and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];
for (j:=1 to n)
{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)
instruction preceding MAC
instruction.
Loop testing done in parallel to
MAC operations.

- 48 -BF - ES

Heterogeneous registers

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

Address
generation
unit (AGU)

Address-
registers
A0, A1, A2
..

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MRDifferent functionality of registers An, AX, AY, AF,MX, MY, MF, MR

Example (ADSP 210x):Example (ADSP 210x):

25

- 49 -BF - ES

Separate address generation units (AGUs)

Data memory can only be
fetched with address contained
in A,
but this can be done in parallel
with operation in main data path
(takes effectively 0 time).
A := A ± 1 also takes 0 time,
same for A := A ± M;
A := <immediate in instruction>
requires extra instruction
Minimize load immediates
Optimization in optimization
chapter

Example (ADSP 210x):Example (ADSP 210x):

- 50 -BF - ES

Modulo addressing

Modulo addressing:
Am++ ≡ Am:=(Am+1) mod n
(implements ring or circular
buffer in memory)

..
x[t1-1]
x[t1]
x[t1-n+1]
x[t1-n+2]
..

Memory, t=t1 Memory, t2=t1+1

sliding window
x

t1
t

n most
recent
values

..
x[t1-1]
x[t1]
x[t1+1]
x[t1-n+2]
..

26

- 51 -BF - ES

Returns largest/smallest number in case of over/underflows

Example:
a 0111
b + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows
• Precise values less important
• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“

