
1

- 1 -BF - ES

Embedded Systems 14

- 2 -BF - ES

Overview of embedded systems design

2

- 3 -BF - ES

Point of departure:
Scheduling general IT systems

In general IT systems, not much is known about the
computational processes a priori

The set of processes to be scheduled is open:
• New software may be inserted into the running system
• Software is run with “random” activation patterns

The power of schedulers thus is inherently limited by lack of
knowledge

- 4 -BF - ES

Scheduling processes in ES:
The difference in process charaterization

Most ES are “closed shops”
We know all computational processes which may potentially
enter the system
We can determine at least part of their activation pattern

• Regular activation in, e.g., signal processing
• Maximum activation frequencies of asynchronous events

determinable from environment dynamics
We should be able to determine their worst-case exectuion time
(WCET)

• If they are well-built
• If we invest enough analysis effort

Consequently, we have much better prospects for
delivering high-quality schedules!

3

- 5 -BF - ES

Scheduling processes in ES:
Differences in goals

In classical OS, quality of scheduling is normally
measured in terms of performance:

Throughput, reaction times, … in average case
In ES, the schedules do often have to meet stringent
quality criteria under all possible execution scenarios:

A task of an RTOS is usually connected with a deadline.
Standard operating systems do not deal with deadlines.

• There are hard deadlines which have to be fulfilled under all
circumstances and

• “soft deadlines” which should be fulfilled if possible
Scheduling of an RTOS has to be predictable.
Real-time systems have to be designed for peak load.
Scheduling for meeting deadlines should work for all anticipated
situations.

- 6 -BF - ES

Scheduling - Basic definitions

Def.: A schedule is a function σ : R+ → N such that
∀ t ∈ R+ ∃ t1 < t2 ∈ R+ . t ∈ [t1, t2) and ∀ t’ ∈ [t1, t2) σ(t) = σ(t’).

In other words: σ is an integer step function and σ(t) = k,
with k > 0, means that task Jk is executed at time t, while
σ(t) = 0 means that the CPU is idle.

A schedule is feasible, if all tasks can be completed
according to a set of specified constraints.
A set of tasks is schedulable if there exists at least one
feasible schedule.

4

- 7 -BF - ES

Example

Non-preemptive schedule of three tasks J1, J2, and J3:

J1 J2 J3

1

2

3

σ(t)

t1 t2 t3 t4
t

- 8 -BF - ES

Example

Preemptive schedule of three tasks J1, J2, and J3:

J1

J2

J3

1

2

3

σ(t)

t

5

- 9 -BF - ES

Constraints for real-time tasks

Three types of constraints for real-time tasks:

Timing constraints
Precedence constraints
Mutual exclusion constraints on shared resources

Typical timing constraints: Deadlines on tasks
Hard: Not meeting the deadline can cause catastrophic
consequences on the system
Soft: Missing the deadline decreases performance of the
system, but does not prevent correct behavior

- 10 -BF - ES

Timing parameters
Timing parameters of a real-time task Ji:

Arrival time ai: time at which task becomes ready for execution
Computation time Ci: time necessary to the processor for
executing the task without interruption
Deadline di: time before which a task should be complete to
avoid damage to the system
Start time si: time at which a tasks starts its execution
Finishing time fi: time at which task finishes its execution
Lateness Li: Li = fi – di, delay of task completion with respect to
deadline
Exceeding time Ei: Ei = max(0, Li)
Slack time Xi: Xi = di – ai – Ci, maximum time a task can be
delayed on its activation to complete within its deadline

Ji ai si fi di

Ci

0

6

- 11 -BF - ES

Timing parameters
Additional timing related parameters of a real-time task Ji:

Criticalness: parameter related to the consequences of missing
the deadline
Value vi: relative importance of the task with respect to other
tasks in the system

Regularity of activation:
• Periodic tasks: Infinite sequence of identical activities

(instances, jobs) that are regularly activated at a constant
rate, here abbreviated by τi

• Aperiodic tasks: Tasks which are not recurring or which do
not have regular activations, here abbreviated by Ji

- 12 -BF - ES

Timing parameters of periodic tasks

Phase Φi: activation time of first periodic instance
Period Ti: time difference between two consecutive
activations
Relative deadline Di: time after activation time of an
instance at which it should be complete

τi Φi

Ci

Ti

Di

Φi+(k-1)Ti

Instance kInstance 1

0

7

- 13 -BF - ES

Scheduling non-periodic tasks

- 14 -BF - ES

A-periodic scheduling

Given:
A set of non-periodic tasks {J1, …, Jn} with

• arrival times ai, deadlines di, computation times Ci
• precedence constraints
• resource constraints

Class of scheduling algorithm:
• Preemptive, non-preemptive
• Off-line / on-line
• Optimal / heuristic
• One processor / multi-processor
• …

Cost function:
• Minimize maximum lateness (soft RT)
• Minimize maximum number of late tasks (feasibility! – hard RT)

Find:
Optimal / good schedule according to given cost function

Ji ai si fi di

Ci

0

8

- 15 -BF - ES

A-periodic scheduling

Not all combinations of constraints, class of algorithm,
cost functions can be solved efficiently.
If there is some information on restrictions wrt. class of
problem instances, then this information should be used!

Begin with simpler classes of problem instances, then
more complex cases.

- 16 -BF - ES

Case 1: Aperiodic tasks with synchronous release

A set of (a-periodic) tasks {J1, …, Jn} with
arrival times ai = 0 ∀ 1 ≤ i ≤ n, i.e. “synchronous” arrival times
deadlines di,
computation times Ci

no precedence constraints, no resource constraints, i.e.
“independent tasks”

non-preemptive
single processor
Optimal
Find schedule which minimizes maximum lateness
(variant: find feasible solution)

9

- 17 -BF - ES

Preemption

Lemma:
If arrival times are synchronous, then preemption does not help, i.e. if
there is a preemptive schedule with maximum lateness Lmax, then
there is also a non-preemptive schedule with maximum lateness Lmax.

- 18 -BF - ES

EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines
Example 1:

587103di

23111Ci

J5J4J3J2J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

10

- 19 -BF - ES

EDD

Example 2:

68452di

24121Ci

J5J4J3J2J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

- 20 -BF - ES

EDD (3)

Theorem (Jackson ’55):
Given a set of n independent tasks with synchronous arrival times,
any algorithm that executes the tasks in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum
lateness.

Remark: Minimizing maximum lateness includes finding a feasible
schedule, if it exists. The reverse is not necessarily true.

11

- 21 -BF - ES

- 22 -BF - ES

EDD

Complexity of EDD scheduling:
Sorting n tasks by increasing deadlines

⇒ O(n log n)

Test of Schedulability:
If the conditions of the EDD algorithm are fulfilled, schedulability can
be checked in the following way:

Sort task wrt. non-decreasing deadline.
Let w.l.o.g. J1, …, Jn be the sorted list.
Check whether in an EDD schedule fi ≤ di ∀ i = 1, …, n.
Since fi = ∑k=1

i Ck, we have to check
∀ i = 1, …, n ∑k=1

i Ck ≤ di

Since EDD is optimal, non-schedulability by EDD implies non-
schedulability in general.

12

- 23 -BF - ES

Case 2: aperiodic tasks with asynchronous release

A set of (a-periodic) tasks {J1, …, Jn} with
arbitrary arrival times ai

deadlines di,
computation times Ci

no precedence constraints, no resource constraints, i.e.
“independent tasks”

preemptive
Single processor
Optimal
Find schedule which minimizes maximum lateness
(variant: find feasible solution)

- 24 -BF - ES

EDF – Earliest Deadline First

At every instant execute the task with the earliest
absolute deadline among all the ready tasks.
Remark:
1. If a new task arrives with an earlier deadline than the running

task, the running task is immediately preempted.
2. Here we assume that the time needed for context switches is

negligible.

13

- 25 -BF - ES

EDF - Example

63200ai

910452di

22221Ci

J5J4J3J2J1

J3

J4

J5

J2

J1

0 1 2 3 4 5 6 7 8 9 10

- 26 -BF - ES

EDF

Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival times, any
algorithm that at every instant executes the task with the earliest
absolute deadline among all the ready tasks is optimal with respect
to minimizing the maximum lateness.

14

- 27 -BF - ES

Non-preemptive version

Changed problem:
A set of (a-periodic) tasks {J1, …, Jn} with

• arbitrary arrival times ai

• deadlines di,
• computation times Ci

• no precedence constraints, no resource constraints, i.e.
“independent tasks”

Non-preemptive instead of preemptive scheduling!
Single processor
Optimal
Find schedule which minimizes maximum lateness (variant: find
feasible solution)

- 28 -BF - ES

Non-preemptive EDF schedule:

Optimal schedule:

Example

57di

24Ci

10ai

J2J1

J1

J2
0 1 2 3 4 5 6 7 8 9 10

J1

J2
0 1 2 3 4 5 6 7 8 9 10

15

- 29 -BF - ES

Example

Observation:
In the optimal schedule the processor remains idle in intervall
[0,1) although task J1 is ready to execute.

If arrival times are not known a-priori, then no on-line
algorithm is able to decide whether to stay idle at time 0
or to execute J1.

Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

- 30 -BF - ES

Non-preemptive scheduling: better schedules through
introduction of idle times

Assumptions:
Arrival times known a priori.
Non-preemptive scheduling
“Idle schedules” are allowed.

Goal:
Find feasible schedule

Problem is NP-hard.

Possible approaches:
Heuristics
Branch-and-bound

16

- 31 -BF - ES

Bratley’s algorithm

Bratley’s algorithm
Finds feasible schedule by branch-and-bound, if there exists one
Schedule derived from appropriate permutation of tasks J1, …, Jn

Starts with empty task list
Branches: Selection of next task (one not scheduled so far)
Bound:

• Feasible schedule found at current path -> search path
successful

• There is some task not yet scheduled whose addition causes
a missed deadline -> search path is blind alley

- 32 -BF - ES

Bratley’s algorithm

Example:

4657di

2212Ci

0114ai

J4J3J2J1

17

- 33 -BF - ES

Bratley’s algorithm

Due to exponential worst-case complexity only
applicable as off-line algorithm.

Resulting schedule stored in task activation list.
At runtime: dispatcher simply extracts next task from
activation list.

- 34 -BF - ES

Case 3: Scheduling with precedence constraints

Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.
Here:

Restrictions:
• Consider synchronous arrival times (all tasks arrive at 0)
• Allow preemption.

2 different algorithms:
• Latest deadline “first” (LDF)
• Modified EDF

18

- 35 -BF - ES

Example

000000ai

653452di

111111Ci

J6J5J4J3J2J1

J2 J3

J4 J5 J6

J1

- 36 -BF - ES

Example

One of the following algorithms is optimal. Which one?

Algorithm 1:
1. Among all sources in the

precedence graph select the
task T with earliest deadline.
Schedule T first.

2. Remove T from G.

3. Repeat.

Algorithm 2:
1. Among all sinks in the

precedence graph select the
task T with latest deadline.
Schedule T last.

2. Remove T from G.

3. Repeat.

19

- 37 -BF - ES

Example (continued)

Algorithm 1:

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

d6

- 38 -BF - ES

Example (continued)

Algorithm 2:

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2 d6

20

- 39 -BF - ES

Example (continued)

Algorithm 1 is not optimal.
Algorithm 1 is the generalization of EDF to the case with
precedence conditions.

Is Algorithm 2 optimal?
Algorithm 2 is called Latest Deadline First (LDF).

Theorem (Lawler 73):
LDF is optimal wrt. maximum lateness.

- 40 -BF - ES

Proof of optimality

21

- 41 -BF - ES

LDF

LDF is optimal.
LDF may be applied only as off-line algorithm.

Complexity of LDF:
O(|E|) for repeatedly computing the current set Γ of tasks with no
successors in the precedence graph G = (V, E).
O(log n) for inserting tasks into the ordered set Γ (ordering wrt. di).
Overall cost: O(n * max(|E|,log n))

