Embedded Systems 15

BF - ES

A-periodic scheduling REVIEW

C, l
Ji I]
0 al Si fi dl
= Given:
= A set of non-periodic tasks {J, ..., J,} with

« arrival times a;, deadlines d;, computation times C;
* precedence constraints
* resource constraints

= Class of scheduling algorithm:

* Preemptive, non-preemptive

* Off-line / on-line

» Optimal / heuristic

* One processor / multi-processor

= Cost function:

= Find:

* Minimize maximum lateness (soft RT)
» Minimize maximum number of late tasks (feasibility! — hard RT)

Optimal / good schedule according to given cost function

BF - ES

Case 1: Aperiodic tasks REVIEW
with synchronous release

A set of (a-periodic) tasks {J,, ..., J} with
= arrival times a, =0V 1 <i<n,i.e. “synchronous” arrival times
= deadlines d,
= computation times C,

= no precedence constraints, no resource constraints, i.e.
‘independent tasks”

non-preemptive

single processor

Optimal

Find schedule which minimizes maximum lateness
(variant: find feasible solution)

BF -ES - 3-

EDD - Earliest Due Date REVIEW

EDD: execute the tasks in order of non-decreasing deadlines

Lemma:

If arrival times are synchronous, then preemption does not help, i.e. if
there is a preemptive schedule with maximum lateness L,,,, then
there is also a non-preemptive schedule with maximum lateness L.

Theorem (Jackson ’55):

Given a set of n independent tasks with synchronous arrival times,
any algorithm that executes the tasks in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

BF - ES -4

Case 2: aperiodic tasks REVIEW
with asynchronous release

A set of (a-periodic) tasks {J,, ..., J} with
= arbitrary arrival times a
= deadlines d,
= computation times C,

= no precedence constraints, no resource constraints, i.e.
‘independent tasks”

= preemptive

Single processor

Optimal

Find schedule which minimizes maximum lateness
(variant: find feasible solution)

BF -ES - 5-

EDF - Earliest Deadline First REVIEW

= EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

= Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

BF -ES - 6-

Non-preemptive version REVIEW

= Changed problem:
= A set of (a-periodic) tasks {J,, ..., J,} with
« arbitrary arrival times g,
+ deadlines d,
» computation times C,

* no precedence constraints, no resource constraints, i.e.
‘independent tasks”

= Non-preemptive instead of preemptive scheduling!

= Single processor

= Optimal

= Find schedule which minimizes maximum lateness (variant: find
feasible solution)

BF - ES ST

Non-preemptive version REVIEW

= Theorem (Jeffay et al. '91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

» When idle schedules are allowed: problem is NP-hard.

= Possible approaches:
= Heuristics
= Bratley’s algorithm: branch-and-bound

BF -ES - 8-

Case 3: Scheduling REVIEW
with precedence constraints

» Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.

» Restrictions:
+ Consider synchronous arrival times (all tasks arrive at 0)
* Allow preemption.
* Theorem (Lawler 73):
LDF (Latest Deadline First) is optimal wrt. maximum
lateness.

BF -ES - 9-

Optimal scheduling algorithms for
periodic tasks

BF -ES - 10-

Periodic scheduling

Instance 7, , D; Instance 7,
- L l -l -l — l
0 9 T
[D+(j-1)T,

= Given:
= A set of periodic tasks I' = {1, ..., 1.} with
» phases @, (arrival times of first instances of tasks),
+ periods T, (time difference between two consecutive activations)
+ relative deadlines D, (deadline relative to arrival times of instances)
» computation times C;
= jthinstance 7, ; of task t; with
* arrival time a;; = @, + (-1) T,
* deadline d, ;= @+ (-1) T, + D,
* starttime s; ; and
» finishing time f, ;

= Find a feasible schedule
BF - ES - 11 -

Assumptions

A.1. Instances of periodic task t; are regularly activated with constant
period T,.

A.2. All instances have same worst case execution time C..

A.3. All instances have same relative deadline D;, here in most cases
equalto T,(i.e., d; ;= ®;+j-T)

A.4. All tasks in T" are independent. No precedence relation, no
resource constraints.

A.5. Overhead for context switches is neglected, i.e. assumed to be 0
in the theory.

" Basic results based on these assumptions form the core of
scheduling theory.

" For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

BF - ES - 12-

Examples for periodic scheduling (1)

Tl T
@ (00
T | 2|4
C|1]2
D,| 1|4

S e e
S e el pm o

I
0o 1 2 10 11

= Schedulable, but only preemptive schedule possible.

BF -ES

- 13-

Examples for periodic scheduling (2)

Tl T
@ |00
T, |24
cl1]2
D|2]4

b ! mim | owiem | mm

| e | :
o1 2 3 4 5 6 7 8 9 10 11 12

= Schedulable with non-preemptive schedule.

BF -ES

- 14 -

Examples for periodic scheduling (3)

| T,

o |00

T, |34 T, M)y
cl2]2 AL/D i
D | 3|4 T /e =3

» No feasible schedule for single processor.

—

Duriey (- = 3-¢=Q

Lf’ adi oo "'L TA E ? W‘wa
R mM\'V‘*}f\"‘—i “’1— T&/ " é w"'h
—) L wb o LRl R T ueh

L L e wh
BF - ES - 15-

Processor utilization

Definition:
Given a set I" of n periodic tasks, the processor
utilization U is given by

d

I
-
A

BF -ES - 16 -

Processor utilization:
using it as a schedulability criterion

= Given: a scheduling algorithm A
= Define U, 4(A) = inf {U(T") | " is not schedulable by algorithm A}.

= If Uy4(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:
= IfUT) < U,4(A) then T is schedulable by A.

= However, if U, 4(A) < U(I') < 1, then T may or may not be schedulable
by A.

* Question:
Does a scheduling algorithm A exist with U, 4(A) = 1?

BF - ES 17 -

Processor utilization

* Question:
Does a scheduling algorithm A exist with U, 4(A) =17

= Answer:
= No, if D, < T, allowed.

= Example: 1| 1
@00
T12]|2
Cl1]|1
D11

* Yes, if D, =T, (or D,2 T,) = Earliest Deadline First (EDF)
* In the following: assume D; = T;

BF -ES - 18-

Earliest Deadline First (EDF)

= EDF is applicable to both periodic and a-periodic tasks.

= |f there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since
» They are simpler due to fixed priorities

= use in “standard OS” possible
= sorting wrt. to deadlines at run time is not needed

- 19-

BF -ES

EDF and processor utilization factor

= Theorem: A set of periodic tasks 1, ..., 1, with D, =T,
is schedulable with EDF iff U=3%_,"C,/ T, < 1.

”.—,){l'..[,d—‘_’l/zcl_,\-_ "(\—u_
q-y'(=y (AT '7T
=) ik_ T YT
L=t Tc_'
\
— T
_ (: 2T
) ?:r [¢
N
{uu.r
%WJ o e TN
x
nl'.‘—_-' k\’\&
BF -ES TM r‘- l_a - 20-

10

(&= . —)

a—2
ok w4 8wt CEOF gohdl M. .

Lek €q be #e cavlbink Ruw s ¢ DE - sohnedels
plen o bk tige Mo doadld

)
_ [a {
__JM
-

t, t, ,
Lk CEa (&) be Ke ﬂz‘—JYq(' S [NV QS N
[, £y) dem woh ekl RV

—_ t u‘- al.\?_«ouz-‘f\._(_\ < t
on2q \L-/\,(—M,\ 23

wl_w(«-:l
BF -ES e

S

- 21-

a\ t T"\'\ = n ecae b b ‘
'CLQ/_— = C ﬁ'\[61_) bhaw MV\}M Nuea t/]

oA &L.A-.,LQAM [-E 5

z

¢ & L:‘J Lantwdion

% €a ‘
foids Tlo proemm Len thh ek b &,

=) lu & TOF gl thon v w
vt bed oale Wil emrtval < €4

Case 2 T bl vy el Lfen &
b~ dadli. & €2 .
—) Cos_,\w-a.-la:@)r\‘;\ \e Wd’\-'(\‘\b—a.}&:\"'\ "Af AL SL
R S R damdly befon &4
- (~an &CQQJ\,‘\,‘ 2 6’7_
—5 Duec & EDF o B b
Uik etk ¢ By oK)uaim:kex’:x
\\M_ 4\}*- Lél-(/"\ fl\ C‘tz\ (tl—l [‘VVL’
BF -ES %:’L:},LW . — tn T e Cewn

[P
7) k’_ U(&g&z\

11

rl_—(\,,(_ DY o~ H\"ﬂ M%_J 9‘A_ 67_)

Hoet) Lo T Wua

=) (_(:,_"(:,,) <.Z Ce

argot, Aot

<

=1 TL‘ "
<
_ (4 &) i(-
|z
= (to-k - W

- 23-

Rate monotonic scheduling (RM)

= Rate monotonic scheduling (RM) (Liu, Layland '73):
= Assign fixed priorities to tasks t;:
* priority(t;) = 1/T;
* l.e., priority reflects release rate
= Always execute ready task with highest priority

= Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

BF - ES 24 -

12

Example for RM (1)

T T T (“\ML‘T CT’|)
1%2| T3 .
) oy ()
o 0]0]0 ()
T |46]12 UN st
cl2]1]4
D] 4612
I
T1T’W:W 2y - ‘%‘WW 1 ‘L 1 1
7, w7 22 v R
r T T T T T T T T T T 1 1 g
LT N .72 S 17/ S 7 3‘
01 2 3 4 5 6 7 8 9 10 11 12
BF - ES . 25-
Example for RM (2)
Ty | T | T3 (/(" = + i i
o« 16
o|0]0]o0
T4 5]10 = |
cl2]2]1
D] 4510
YiEEE (\YW; 1 };_”’;47;_‘1 : ,L : :
T2{}r zzh :\]: o= :‘L o P
o
T3‘1‘ — it i@i - ‘](C
01 2 3 4 56 78 9 1011 12
N ‘4)‘\/\-‘&0’(& gok,._p_w
BF - ES - 26-

13

Optimality of Rate Monotonic Scheduling

* Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

= Def.: The response time R, ; of an instance j of task i is
the time (measured from the arrival time) at which the
instance is finished: R, ; = f; ;- a, ;.

» The critical instant of a task is the time at which the
arrival of the task will produce the largest response time.

BF - ES - 27-

Response times and critical instants

= Observation:
For RM, the critical instant t of a task t; is given by the
time when 1, ; arrives together with all tasks 1, ..., 7,4
with higher priority.

Lk cu(8) Lo Hhe romatong B
\~ e Gt i bo~a a’ﬁ Ti wlede

avivdd Let €
Ruphu. Buw (= T
f, C cew CE) * (#] omivonhs 4 Tic ok

n=1 iy e 4 Toy) - Cw > + Gy
=7 K’vspm/‘rb Ruw © wo v b cw
BF -ES . 28-

Ce) < C'K -

14

Response times and critical instants

= For our “worst case task sets” we can assume that there

are critical instants where an instance of a task arrives
together with all higher priority tasks.

= A task set is schedulable, if the response time at these
critical instants is not larger than the relative deadline.

BF -ES

- 29-

Non-RM Schedule

Schedule feasible iff C; + C, < T,

BF -ES

- 30-

15

RM-Schedule

= LetF=|T,/T,] bethe number of periods of 1, entirely
contained in T,.

= Case 1:

» The computation time C, is short enough, so that all
requests of 1, within period of t, are completed before
second request of 1.

« le.C,sT,—FT,

—- 2 1
+ Schedule feasible if (F+1)C, +C, < T,
AT

T1b I—\ = I
o] o e

0 FT, T,

BF -ES - 31-

RM-Schedule

= Case 2:
» The second request of 1, arrives when 1, is running.
+1e.C,2T,-FT,

[—>

T \ 1

| - |

Schedule feasible if FC, + C, < FT,

BF -ES - 32-

16

Proof of Liu/Layland

(o L W)

Ue sher Hat = l—t‘dll.x-d' & g oo G L\s\] e i

fe TF 0
Come Az (e TL-FTat 2
- C/L “_CL C‘- Tq 7)

gM(»kM‘v k\R}'\/ I

(FrA) (v ¢ &7
A

!

- - -~ -

- 33-

BF -ES

- 34-

17

