
1

- 1 -BF - ES

Embedded Systems 16

- 2 -BF - ES

Periodic scheduling

Given:
A set of periodic tasks Γ = {τ1, …, τn} with

• phases Φi (arrival times of first instances of tasks),
• periods Ti (time difference between two consecutive activations)
• relative deadlines Di (deadline relative to arrival times of instances)
• computation times Ci

⇒ j th instance τi, j of task τi with
• arrival time ai, j = Φi + (j-1) Ti,
• deadline di, j = Φi + (j-1) Ti + Di,
• start time si, j and
• finishing time fi, j

Find a feasible schedule

τi Φi

Ci

Ti

Di

Φi+(j-1)Ti

Instance τi, jInstance τi, 1

0

REVIEW

2

- 3 -BF - ES

Assumptions

A.1. Instances of periodic task τi are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.
A.3. All instances have same relative deadline Di, here in most cases

equal to Ti (i.e., di, j = Φi + j ⋅ Ti)
A.4. All tasks in Γ are independent. No precedence relation, no

resource constraints.
A.5. Overhead for context switches is neglected, i.e. assumed to be 0

in the theory.

Basic results based on these assumptions form the core of
scheduling theory.
For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

REVIEW

- 4 -BF - ES

Processor utilization

Definition:
Given a set Γ of n periodic tasks, the processor utilization U is
given by

Define Ubnd(A) = inf {U(Γ) | Γ is not schedulable by algorithm A}.

If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:

If U(Γ) < Ubnd(A) then Γ is schedulable by A.
However, if Ubnd(A) < U(Γ) ≤ 1, then Γ may or may not be schedulable
by A.

REVIEW

3

- 5 -BF - ES

Earliest Deadline First (EDF)

Theorem: A set of periodic tasks τ1, ..., τn with Di = Ti
is schedulable with EDF iff U ≤ 1.

EDF is applicable to both periodic and a-periodic tasks.

If there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since

They are simpler due to fixed priorities
⇒ use in “standard OS” possible
sorting wrt. to deadlines at run time is not needed

REVIEW

- 6 -BF - ES

Rate monotonic scheduling (RM)

Rate monotonic scheduling (RM) (Liu, Layland ’73):
Assign fixed priorities to tasks τi:

• priority(τi) = 1/Ti

• I.e., priority reflects release rate
Always execute ready task with highest priority
Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling algorithms.

REVIEW

4

- 7 -BF - ES

Non-RM Schedule

τ2

τ1

0 T2

Schedule feasible iff C1 + C2 ≤ T1

REVIEW

- 8 -BF - ES

RM-Schedule

Let F = ⎣T2 / T1⎦ be the number of periods of τ1 entirely
contained in T2.
Case 1:

• The computation time C1 is short enough, so that all
requests of τ1 within period of τ2 are completed before
second request of τ2.

• I.e. C1 ≤ T2 – F T1

• Schedule feasible if (F+1)C1 + C2 ≤ T2

τ2

τ1

0 FT1 T2

REVIEW

5

- 9 -BF - ES

RM-Schedule

Case 2:
• The second request of τ2 arrives when τ1 is running.
• I.e. C1 ≥ T2 – F T1

Schedule feasible if FC1 + C2 ≤ FT1

τ2

τ1

0 FT1 T2

REVIEW

- 10 -BF - ES

Computation of Ubnd(RM)

First step: Consider only task sets with 2 tasks
Computation of
Ubnd(RM, 2) = inf {U(Γ) | Γ is not schedulable by RM, |Γ| = 2}.
Idea:
• Construct set of tasks with following properties:

1. Set of tasks is schedulable by RM.
2. Any increase of computation times makes the set of tasks

non-schedulable.
3. Processor utilization is minimal under properties 1. and 2.

• “Worst case task set”

6

- 11 -BF - ES

Computation of Ubnd(RM, 2)

Worst case situation constructed for 2 processes:

0

τ2

τ1

idle times

- 12 -BF - ES

Computation of Ubnd(RM, 2)

Consider a set of 2 periodic tasks τ1 and τ2 with T1 ≤ T2
⇒ priority(τ1) > priority(τ2).
We consider the critical instant when τ1 and τ2 arrive at
the same time.
We construct a worst case scenario where the
processor utilization factor is minimal, but any increase
of computation times destroys schedulability

This is done by manipulating
computation times C1 and C2 and
T1 and T2 (more precisely T2 / T1)

7

- 13 -BF - ES

Case 1: C1 ≤ T2 – F T1

τ2

τ1

0 FT1 T2

- 14 -BF - ES

8

- 15 -BF - ES

Case 2: C1 ≥ T2 – F T1

τ2

τ1

0 FT1 T2

- 16 -BF - ES

9

- 17 -BF - ES

Manipulating T2/T1

- 18 -BF - ES

10

- 19 -BF - ES

- 20 -BF - ES

11

- 21 -BF - ES

Computation of Ubnd(RM)

Result for two processes:
Any set of two periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.

Similarly, for the general case of n processes the
following can be shown:
Any set of n periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.Ubnd

Ubnd

- 22 -BF - ES

Computation of Ubnd(RM)

Any set of n periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.

Observation:
Ubnd is decreasing with n.

Ubnd

12

- 23 -BF - ES

Schedulability check

To provide a lower bound for arbitrary n we have to
compute = ln 2 ≈ 0.69

Hence, a set of tasks can be scheduled by RM if
U < Ubnd(RM) = ln 2 ≈ 0.69

But what can we tell about schedulability when
processor utilization factor is larger than ?
Answer:
We can compute a more precise result, if we make use
of the knowledge of periods Ti and computation times Ci.

- 24 -BF - ES

Schedulability check

Remember:
The response time Ri, j of an instance j of task i is the
time (measured from the arrival time) at which the
instance is finished: Ri, j = fi, j – ai, j.
Compute an upper bound Ri on the response time:

Suppose that τ1, ..., τn are ordered with increasing periods (i.e.
decreasing priorities).
Consider an arbitrary periodic task τi.
At a critical instant t, when an instance of τi arrives together with
all higher priority tasks, we have:

• Ri = Ci + ∑k=1
i-1 (# activations of τk during [t, t + Ri]) ⋅ Ck

= Ci + ∑k=1
i-1 ⎡Ri/Tk⎤ ⋅ Ck

13

- 25 -BF - ES

Schedulability check

⇒ We just need to solve n fixed point equations to
compute R1, ..., Rn.

Ri = Ci + ∑k=1
i-1 ⎡Ri/Tk⎤ ⋅ Ck

Ri is the largest fixed point of the function
f(Ri) = Ci + ∑k=1

i-1 ⎡Ri/Tk⎤ ⋅ Ck.
Sufficient condition for schedulability: Ri ≤ Di ∀ i

Problem: Solution of fixed point equation?

- 26 -BF - ES

Schedulability check

Solution of fixed point equation?
Compute the following sequence:

Ri
(0) = Ci.

Ri
(j+1) = Ci + ∑k=1

i-1 ⎡Ri
(j) / Tk⎤ ⋅ Ck.

It is easy to see that this sequence is monotonically
increasing, i.e., f(x) = Ci + ∑k=1

i-1 ⎡x / Tk⎤ ⋅ Ck is
monotonically increasing.
⇒ If a least fixed point of f(x) exists, then the sequence
converges to this fixed point.

14

- 27 -BF - ES

Schedulability check

Lemma: The sequence is unboundedly increasing or
converges after a finite number of steps to the least
fixed point.

- 28 -BF - ES

Schedulability check

⇒ Algorithm:

∀ i: Ri
(0) = Ci

repeat

∀ i: Ri
(j+1) = Ci + ∑k=1

i-1 ⎡ Ri
(j) / Tk ⎤ ⋅ Ck

until (∃ i with Ri
(j+1) > Di) or (∀ i Ri

(j+1) = Ri
(j));

if (∀ i Ri
(j+1) = Ri

(j)) then
report(“RM schedulable”);

15

- 29 -BF - ES

Summary

Problem of scheduling independent and preemptable
periodic tasks

Rate monotonic scheduling:
Optimal solution among all fixed-priority schedulers
Schedulability of n tasks guaranteed, if processor utilization

Earliest deadline first:
Optimal solution among all dynamic-priority schedulers
Schedulability guaranteed if processor utilization U ≤ 1.

- 30 -BF - ES

Rate Monotonic Scheduling
in Presence of Task Dependencies

16

- 31 -BF - ES

Assumptions so far

A.1. Instances of periodic task τi are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.
A.3. All instances have same relative deadline Di, here in most cases

equal to Ti (i.e., di, j = Φi + j ⋅ Ti)
A.4. All tasks in Γ are independent. No precedence relation, no

resource constraints.
A.5. Overhead for context switches is neglected, i.e. assumed to be 0

in the theory.

Basic results based on these assumptions form the core of
scheduling theory.
For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

- 32 -BF - ES

Wait state caused by resource constraints

ready run

wait

activation termination

signal wait

• Each mutually exclusive resource Ri
is protected by a semaphore Si.

• Each critical section operating on Ri
must begin with a wait(Si) primitive
and end with a signal(Si) primitive.

• wait primitive on locked semaphore
→ wait state until another task executes signal primitive

dispatching

preemption

17

- 33 -BF - ES

The priority inversion problem

Priority inversion can occur due to resource conflicts
(exclusive use of shared resources) in fixed priority
schedulers like RM:

normal execution critical region
priority(J1) > priority(J2)

Here: Blocking time equal to length of critical section.

J1

J2

J1 blocked

- 34 -BF - ES

The priority inversion problem

normal execution critical region
priority(J1) > priority(J2) > priority(J3)

Blocking time equal to length of critical section +
computation time of J2.
Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

18

- 35 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (1)

“But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft
began experiencing total system resets,
each resulting in losses of data. The
press reported these failures in terms
such as "software glitches" and "the
computer was trying to do too many
things at once".” …

- 36 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (2)

System overview:
Information Bus (IB):

• Buffer for exchanging data between different tasks
• Shared resource of two tasks M and B

Three tasks:
• Meteorological data gathering task (M):

– collects meteorological data
– reserves IB, writes data to IB, releases IB
– infrequent task, low priority

• Bus management (B):
– data transport from IB to destination
– reserves IB, data transport, releases IB
– frequent task, high priority

19

- 37 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (3)

Three tasks:
• ...
• “Communication task” (C):

– medium priority, does not use IB

Scheduling with fixed priorities.

Watch dog timer (W):
• Execution of B as indicator of system hang-up
• If B is not activated for certain amount of time: Reset the

system

- 38 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (5)

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

Reset by watchdog timer

20

- 39 -BF - ES

Coping with priority inversion:
The priority inheritance protocol

Idea of priority inheritance protocol:
If a task Jh blocks, since another task Jl with lower priority owns
the requested resource, then Jl inherits the priority of Jh.
When Jl releases the resource, the priority inheritance from Jh is
undone.
Rule: Tasks always inherit the highest priority of tasks blocked
by it.

- 40 -BF - ES

Direct vs. push-through blocking

Direct blocking: High-priority job tries to acquire resource already
held by lower-priority job
Push-through blocking: Medium-priority job is blocked by lower-
priority job that has inherited a higher priority.

J1

J2

J3

21

- 41 -BF - ES

Transitive priority inheritance

J1

J2

J3

Priority of J3

- 42 -BF - ES

Priority inheritance for the Pathfinder example

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

NO reset by watchdog timer

J3 inherits priority of J1

22

- 43 -BF - ES

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem:

the VxWorks operating system used in the pathfinder
implements a flag for the calls to mutual exclusion primitives.
This flag allows priority inheritance to be set to “on”.
When the software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

- 44 -BF - ES

Schedulability check

Let Bi be the maximum blocking time due to lower-priority
jobs that a job Ji may experience.

∀ i: Ri
(0) = Ci

repeat

∀ i: Ri
(j+1) = Ci + Bi + ∑k=1

i-1 ⎡ Ri
(j) / Tk ⎤ ⋅ Ck

until (∃ i with Ri
(j+1) > Di) or (∀ i Ri

(j+1) = Ri
(j));

if (∀ i Ri
(j+1) = Ri

(j)) then
report(“RM schedulable”);

23

- 45 -BF - ES

Blocking Time Computation

Precise algorithm based on exhaustive search: exponential cost

Here: approximative solution
Assumption: no nested critical sections

Lemma: Transitive priority inheritance can only occur in the presence
of nested critical sections.

- 46 -BF - ES

Blocking Time

priority ceiling C(S)=priority of the highest-priority job that can lock S

Theorem: In the absence of nested critical sections,
a critical section of job J guarded by semaphore S
can only block job J‘
if priority(J) < priority(J‘) ≤ C(S).

24

- 47 -BF - ES

Blocking Time

Dj,k: duration of longest critical section of task τj,
guarded by semaphore Sk

Blocking Time

Bi ≤ ∑n
j=i+1 maxk[Dj,k : C(Sk)≥Pi]

Bi ≤ ∑m
k=1 maxj>i[Dj,k : C(Sk)≥Pi]

where the task set consists of n periodic tasks that
use m distinct semaphores.

- 48 -BF - ES

Problem: Chained Blocking

J1

J2

J3

25

- 49 -BF - ES

Problem: Deadlock

J1

J2

J1:

wait(Sa)

signal(Sa)

wait(Sb)

signal(Sb)

J2:

wait(Sb)

signal(Sb)

wait(Sa)

signal(Sa)

- 50 -BF - ES

Priority Ceiling Protocol

Each semaphore S is assigned a priority ceiling:
C(S)=priority of the highest-priority job that can lock S

The processor is assigned to a ready job J with highest priority.

To enter a critical section, J needs priority > C(S*),
where S* is the currently locked semaphore with max C.
→ otherwise J „blocks on semaphore“ and

priority of J is inherited by job J‘ holding S*.

When J‘ exits critical section, its priority is updated to the highest
priority of some job that is blocked by J‘ (or to the nominal priority if
no such job exists).

26

- 51 -BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

- 52 -BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority
Ceiling Protocol, a job can be blocked for at most the
duration of one critical section.

27

- 53 -BF - ES

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.

