
1

- 1 -BF - ES

Embedded Systems 17

- 2 -BF - ES

Periodic scheduling

Given:
A set of periodic tasks Γ = {τ1, …, τn} with

• phases Φi (arrival times of first instances of tasks),
• periods Ti (time difference between two consecutive activations)
• relative deadlines Di (deadline relative to arrival times of instances)
• computation times Ci

⇒ j th instance τi, j of task τi with
• arrival time ai, j = Φi + (j-1) Ti,
• deadline di, j = Φi + (j-1) Ti + Di,
• start time si, j and
• finishing time fi, j

Find a feasible schedule

τi Φi

Ci

Ti

Di

Φi+(j-1)Ti

Instance τi, jInstance τi, 1

0

REVIEW

2

- 3 -BF - ES

Rate monotonic scheduling (RM)

Rate monotonic scheduling (RM) (Liu, Layland ’73):
Assign fixed priorities to tasks τi:

• priority(τi) = 1/Ti

• I.e., priority reflects release rate
Always execute ready task with highest priority
Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling algorithms.

REVIEW

- 4 -BF - ES

Schedulability check

X
A set of tasks can be scheduled by RM if

U < Ubnd(RM) = ln 2 ≈ 0.69

But what can we tell about schedulability when
processor utilization factor is larger than ?
Answer:
We can compute a more precise result, if we make use
of the knowledge of periods Ti and computation times Ci.

REVIEW

3

- 5 -BF - ES

Schedulability check

Remember:
The response time Ri, j of an instance j of task i is the
time (measured from the arrival time) at which the
instance is finished: Ri, j = fi, j – ai, j.
Compute an upper bound Ri on the response time:

Suppose that τ1, ..., τn are ordered with increasing periods (i.e.
decreasing priorities).
Consider an arbitrary periodic task τi.
At a critical instant t, when an instance of τi arrives together with
all higher priority tasks, we have:

• Ri = Ci + ∑k=1
i-1 (# activations of τk during [t, t + Ri]) ⋅ Ck

= Ci + ∑k=1
i-1 ⎡Ri/Tk⎤ ⋅ Ck

REVIEW

- 6 -BF - ES

Schedulability check

Solution of fixed point equation?
Compute the following sequence:

Ri
(0) = Ci.

Ri
(j+1) = Ci + ∑k=1

i-1 ⎡Ri
(j) / Tk⎤ ⋅ Ck.

It is easy to see that this sequence is monotonically
increasing, i.e., f(x) = Ci + ∑k=1

i-1 ⎡x / Tk⎤ ⋅ Ck is
monotonically increasing.
⇒ If a least fixed point of f(x) exists, then the sequence
converges to this fixed point.

REVIEW

4

- 7 -BF - ES

Schedulability check

⇒ Algorithm:

∀ i: Ri
(0) = Ci

repeat

∀ i: Ri
(j+1) = Ci + ∑k=1

i-1 ⎡ Ri
(j) / Tk ⎤ ⋅ Ck

until (∃ i with Ri
(j+1) > Di) or (∀ i Ri

(j+1) = Ri
(j));

if (∀ i Ri
(j+1) = Ri

(j)) then
report(“RM schedulable”);

REVIEW

- 8 -BF - ES

Rate Monotonic Scheduling
in Presence of Task Dependencies

REVIEW

5

- 9 -BF - ES

The priority inversion problem

Priority inversion can occur due to resource conflicts
(exclusive use of shared resources) in fixed priority
schedulers like RM:

normal execution critical region
priority(J1) > priority(J2)

Here: Blocking time equal to length of critical section.

J1

J2

J1 blocked

REVIEW

- 10 -BF - ES

The priority inversion problem

normal execution critical region
priority(J1) > priority(J2) > priority(J3)

Blocking time equal to length of critical section +
computation time of J2.
Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

REVIEW

6

- 11 -BF - ES

Coping with priority inversion:
The priority inheritance protocol

Idea of priority inheritance protocol:
If a task Jh blocks, since another task Jl with lower priority owns
the requested resource, then Jl inherits the priority of Jh.
When Jl releases the resource, the priority inheritance from Jh is
undone.
Rule: Tasks always inherit the highest priority of tasks blocked
by it.

REVIEW

- 12 -BF - ES

Direct vs. push-through blocking

Direct blocking: High-priority job tries to acquire resource already
held by lower-priority job
Push-through blocking: Medium-priority job is blocked by lower-
priority job that has inherited a higher priority.

J1

J2

J3

REVIEW

7

- 13 -BF - ES

Transitive priority inheritance

J1

J2

J3

Priority of J3

REVIEW

- 14 -BF - ES

Schedulability check

Let Bi be the maximum blocking time due to lower-priority
jobs that a job Ji may experience.

∀ i: Ri
(0) = Ci

repeat

∀ i: Ri
(j+1) = Ci + Bi + ∑k=1

i-1 ⎡ Ri
(j) / Tk ⎤ ⋅ Ck

until (∃ i with Ri
(j+1) > Di) or (∀ i Ri

(j+1) = Ri
(j));

if (∀ i Ri
(j+1) = Ri

(j)) then
report(“RM schedulable”);

REVIEW

8

- 15 -BF - ES

Problem: Chained Blocking

J1

J2

J3

REVIEW

- 16 -BF - ES

Problem: Deadlock

J1

J2

J1:

wait(Sa)

signal(Sa)

wait(Sb)

signal(Sb)

J2:

wait(Sb)

signal(Sb)

wait(Sa)

signal(Sa)

REVIEW

9

- 17 -BF - ES

Priority Ceiling Protocol

Each semaphore S is assigned a priority ceiling:
C(S)= priority of the highest-priority job that can lock S

The processor is assigned to a ready job J with highest priority.

To enter a critical section, J needs priority > C(S*),
where S* is the currently locked semaphore with max C.
→ otherwise J „blocks on semaphore“ and

priority of J is inherited by job J‘ holding S*.

When J‘ exits critical section, its priority is updated to the highest
priority of some job that is blocked by J‘ (or to the nominal priority if
no such job exists).

REVIEW

- 18 -BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

REVIEW

10

- 19 -BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority
Ceiling Protocol, a job can be blocked for at most the
duration of one critical section.

- 20 -BF - ES

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.

11

- 21 -BF - ES

Incorporating a-periodic tasks

In real systems, not all tasks are periodic
Environmental events to be processed
Exceptions raised
Background tasks running whenever CPU time budget permits

Thus, real systems tend to be a combination of
periodic and
a-periodic tasks

and of
hard real-time and
soft real-time tasks.

- 22 -BF - ES

A-periodic and periodic tasks together (1)

A-periodic and periodic tasks together
can be handled by dynamic-priority schedulers like EDF

Problem:
Off-line guarantees can not be given without assumptions on a-
periodic tasks.
If deadlines for a-periodic tasks are hard, a-periodic tasks need
to be characterized by a minimum interarrival time between
consecutive instances
⇒ bounds on the a-periodic load
A-periodic tasks with maximum arrival rate may be modeled as
periodic tasks with this rate

⇒ periodic scheduling
A-periodic tasks with maximum arrival rate are called sporadic
tasks.

12

- 23 -BF - ES

A-periodic and periodic tasks together (2)

Other solutions for the case that periodic tasks have
hard deadlines, a-periodic tasks have soft deadlines.

Simplest solution: Background scheduling
• A-periodic tasks are only executed when no periodic task is

ready
• Guarantees for periodic tasks do not change
• Only applicable when load is not too high

Other solutions:
• Define new periodic tasks, a so-called server
• A-periodic tasks are executed during “execution time” of

server process
• Independent scheduling strategies possible for periodic

tasks and a-periodic tasks “inside the server”

- 24 -BF - ES

REVIEW

13

- 25 -BF - ES

Overview

- 26 -BF - ES

Specification

Kahn process
networks, SDF

Data flow model
⊂

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL,
Simulink

Discrete event (DE)
model

C, C++, Java with libraries
CSP, ADA |

C, C++,
Java

Von Neumann
model

Petri netsComputational
graphs

SDL, MSCsStateCharts,
StateFlow

Communicating
finite state
machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computations

14

- 27 -BF - ES

StateCharts

Why?
Concise models of complex systems:
StateCharts = FSMs + Hierarchy + Orthogonality +

Broadcast communication
Commercial tools (StateMate, StateFlow, …)

What?
Semantics
Virtual Prototyping (→ Matlab/Simulink/Stateflow)

- 28 -BF - ES

StateCharts: Hierarchy + Orthogonality

15

- 29 -BF - ES

StateCharts: Default-state mechanism

- 30 -BF - ES

StateCharts: Semantics (Statemate)

Two stages
Preparation (for timeout events and scheduled actions)
Execution

Preparation stage:
Fix scheduled actions that will be executed
Fix timeout events that will be generated

Execution stage:
Determine the set of transitions to be taken based on internal
and external events and on values of internal and external
variables
Compute the next states and the reactions (evaluate right hand
sides of assignments)
Transitions become effective, variables obtain new values.

16

- 31 -BF - ES

Hybrid Systems

- 32 -BF - ES

Hybrid Systems: The super-step time model
Two-dimensional time:

Assumption: Computation time is neglegible compared to dynamics of
the environment.

17

- 33 -BF - ES

Petri Nets

Why?
Modeling causal dependencies
Distributed systems

What?
Reachability graph
Invariant generation
Deadlocks

Advanced material:
Fairness
Nets with priorities
Predicate/transition nets

- 34 -BF - ES

Activated transitions

Transition t is „activated“ iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

18

- 35 -BF - ES

Shorthand for changes of markings

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∩∈+−
∈+
∈−

=
••

••

••

0
if),(),(
 \if),(
 \if),(

)(
ttpptWtpW

ttpptW
ttptpW

ptLet

⇒ ∀p ∈ P: M´(p) = M(p)+ t(p)

Firing
transition:

⇒ M´ = M+ t +: vector add

- 36 -BF - ES

Reachability graph

M [t> M` iff M´= M+ t
M [ε> M` iff M=M`
M [qt> M` iff ∃ M`` . M [q> M`` and M`` [t> M`
M [*> M‘ iff ∃ q . M [q> M`

Reachability set R(M) = {M‘ | M [*> M‘ }
Reachability graph RG(M):
nodes R(M), edges { (M,t,M`) | M [t> M´ }

19

- 37 -BF - ES

M1
M2 M3 M4

M8

M5
M6

M7

M3s M4s

M8s

M5s
M6s

M7s
M2s

Reachable markings

- 38 -BF - ES

Unbounded Petri net

p1

p2

p3

t1 t2

2
2

2

20

- 39 -BF - ES

Boundedness

A P/T net is unbounded iff there exist two reachable
markings M, M’, such that
M[*>M’ and M’ > M.

Every infinite sequence of markings (Mi) contains a weakly
monotonically growing infinite subsequence (M`i), i.e., for
j<k, M`j ≤ M`k.

- 40 -BF - ES

Algorithm for deciding boundedness

Explore RG(M0) depth-first:
If there exists a marking M‘ on the stack
such that M‘<M,
stop with result UNBOUNDED;

If entire graph explored, return BOUNDED.

21

- 41 -BF - ES

Invariant Generation

0

1

-3 -2 -1

32

t1

t6

t2 t3

t4

t5

- 42 -BF - ES

Invariants & boundedness

Theorem:
a) If R is an invariant and p ∈ R, then p is bounded.
b) If a net is covered by invariants then it is

bounded.

22

- 43 -BF - ES

Deadlock

A dead marking (deadlock) is a marking where no transition can fire.
A Petri net is deadlock-free if no dead marking is reachable.

- 44 -BF - ES

Structural properties: deadlock-traps

A place set S is a (static) deadlock if
every transition that adds token to S
also removes token from S.
A place set S is a trap if every
transition that removes token from S
also adds token to S.
A P/T net has the deadlock-trap
property, if every (static) deadlock
contains a trap that is sufficiently
marked in M0.
Every homogeneous P/T net with non-
blocking weights that has the
deadlock-trap property is deadlock-
free.

23

- 45 -BF - ES

Data flow models

Why?
Many applications can be specified in the form of a set of
communicating processes.

Communication exclusively through FIFOs
Describe local behavior + dependencies
without worrying about global control

What?
Kahn process networks

• Park‘s runtime scheduling algorithm
Synchronous data flow (SDF)

• Lee/Messerschmitt‘s static scheduling algorithm

- 46 -BF - ES

Kahn process networks

Each node
corresponds to one
program/task;
Communication is only
via channels;
Channels include
FIFOs as large as
needed;
Send operations are
non-blocking, reads
are blocking.

24

- 47 -BF - ES

Kahn process networks are deterministic

There is only one sender per channel.
A process cannot check whether data is available before
attempting a read.
A process cannot wait for data for more than one port at a time.
Therefore, the order of reads depends only on data, not on the
arrival time.
Therefore, Kahn process networks are deterministic (!); for a
given input, the result will always the same, regardless of the
speed of the nodes.

- 48 -BF - ES

Scheduling may be impossible

a

b
A

(Two a’s
for every b)

B
(Alternates
between

receiving a
and b)

25

- 49 -BF - ES

Parks’ Scheduling Algorithm (1995)

Set a capacity on each channel
Block a write if the channel is full
Repeat

Run until deadlock occurs
If there are no blocking writes → terminate
Among the channels that block writes,
select the channel with least capacity
and increase capacity until producer can fire.

- 50 -BF - ES

Asynchronous message passing=
tasks do not have to wait until output is accepted.
Synchronous data flow =
all tokens are consumed at the same time.

Synchronous data flow (SDF)

1 1 2 3 2 7 8 7 5 1

26

- 51 -BF - ES

SDF Scheduling Algorithm
Lee/Messerschmitt 1987

A

B

1
2

3

2

D

C

3

41

3

2
1

d(CA)=6
2. Determine periodic schedule

1. Establish relative execution rates

- 52 -BF - ES

Message Sequence Charts

Why?
Modeling scenarios (instead of state-based behavior)
Parital-order semantics
ITU-T Standard Z.120
Integrated as sequence diagrams in UML

What?
Synchronous vs. asynchronous concatenation
Regularity

Advanced material:
Live sequence charts

27

- 53 -BF - ES

Message Sequence Charts

Ch = (E, ≤, λ)
the elements of Ep are arranged along a life-line with
the earlier elements appearing above the later
elements.

- 54 -BF - ES

Language = Set of linearizations

A linearization of a basic MSC is a sequence of actions
λ(e0), λ(e1), …, λ(en) such that E={e0,e1, …,en} and
e0≤e1 ≤ … ≤ en.

Each basic MSC Ch = (E, ≤, λ) defines a set of
linearizations: lin(Ch)⊆Σ∗

28

- 55 -BF - ES

Message Sequence Graphs

- 56 -BF - ES

Synchronous vs. asynchronous concatenation

edges in an MSG represent chart concatenation:

Synchronous concatenation Ch:Ch´
means that all the events in Ch must finish before any
event in Ch´ can occur.
Asynchronous concatenation Ch1 ◦ Ch2
is carried out at the level of life-lines.

asynchronous concatenation of two charts is also a chart.
synchronous concatenation of two charts
may not result in a chart.
asynchronous concatenation may lead to non-regular
languages

29

- 57 -BF - ES

Communication-boundedness

Communication-boundedness is a sufficient condition for
regularity.

The communication graph of a basic MSC
is a directed graph,
where the nodes are the processes,
edge p→q if p!q(m) for some m in chart.
MSC is communication-bounded iff communication
graph consists of a single strongly-connected
component (+ isolated nodes)
MSG is communication-bounded iff communication
graph of all loops is communication-bounded.

- 58 -BF - ES

30

- 59 -BF - ES

VHDL

Why?
Describing, simulating, synthesizing hardware
Standard in (European) industry

What?
Entities, architectures
Multi-valued logic
Semantics

• Transport delay model

Advanced material:
IEEE 1164
Parameterized hardware

- 60 -BF - ES

entity full_adder is
port(a, b, carry_in: in Bit; -- input ports

sum,carry_out: out Bit); --output ports
end full_adder;

architecture behavior of full_adder is
begin
sum <= (a xor b) xor carry_in after 10 Ns;

carry_out <= (a and b) or (a and carry_in) or
(b and carry_in) after 10 Ns;

end behavior;

architecture structure of full_adder is
component half_adder

port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
end component;

component or_gate
port (in1, in2:in Bit; o:out Bit);

end component;
signal x, y, z: Bit; -- local signals
begin -- port map section

i1: half_adder port map (a, b, x, y);
i2: half_adder port map (y, carry_in, z, sum);
i3: or_gate port map (x, z, carry_out);

end structure;

Architectures describe
implementations of entities.

Architectures and their
components can define a
hierarchy of arbitrary depth.

31

- 61 -BF - ES

Multi-valued logic

Many subcircuits can be
effectively disconnected
from the rest of the
circuit (they provide
„high impedance“
values to the rest of the
circuit).
Example: subcircuits
with tri-state outputs.

We introduce signal value 'Z', meaning „high impedance “We introduce signal value 'Z', meaning „high impedance “

Example: Tristate NOR
VDD

GROUND

A

B

A B

C

ENABLE

ENABLE

ENABLE = `0`
⇒ C is disconnected
from the rest of the
circuit

- 62 -BF - ES

Semantics

Initialization

End of simulation

Assign new values
to signals

Update
current time

Evaluate processes

Resume processes

32

- 63 -BF - ES

Inertial vs. transport delay model

Inverter
Input Output

-- INERTIAL is the default
Output <= NOT input AFTER 10 ns;

-- TRANSPORT must be specified
Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Output

Input

5 10 15 20 25 30 35

- 64 -BF - ES

Overview of embedded systems design

33

- 65 -BF - ES

Embedded System Hardware

Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

- 66 -BF - ES

Sensors, A/D + D/A converters

Why?
Embedded systems interact with physical environment.

What?
Sample & hold circuits
A/D converters
D/A converters

Advanced material:
Image sensors, …

34

- 67 -BF - ES

Sample and Hold

Input

Output

Clock

- 68 -BF - ES

Flash conversion vs. successive approximation

35

- 69 -BF - ES

Information Processing

Why?
Embedded systems must be efficient
Embedded processors need not be instruction set compatible
with standard PCs

What?
Power/energy efficiency
Code-size efficiency
Runtime efficiency

Advanced material:
Reconfigurable logic, Multimedia processors, scratch pad
memory, …

- 70 -BF - ES

Dynamic voltage scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):

frequency clock:
voltagesupply :

ecapacitanc load:
activity switching:
with2

f
V
C

fVCP

dd

L

ddL

α

α=

()

) than (
voltage threshhold:

 with2

ddt

t

tdd

dd
L

VV
V

VV
VCk

<

−
=τ

Delay for CMOS circuits:

Decreasing Vdd reduces P quadratically,
while the run-time of algorithms is only linearly increased
E=P x t decreases linearly
(ignoring the effects of the memory system and Vt)

36

- 71 -BF - ES

Code-size efficiency

CISC machines: RISC machines designed for run-time-,
not for code-size-efficiency
Compression techniques: key idea

- 72 -BF - ES

Application: y[j] = ∑
i=0

x[j-i]*a[i]
∀i: 0≤i ≤ n-1: yi[j] = yi-1[j] + x[j-i]*a[i]

Run-time efficiency
-- Domain-oriented architectures -

Architecture: Example: Data path ADSP210x

n-1

Application
maps nicely
onto
architecture

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation
unit (AGU)

Address-
registers
A0, A1, A2
..
i+1, j-i+1

a
x

MR:=0;
MX:=x[n-1]; MY:=a[0];
A1:=1; A2:=n-2;
for (j:=1 to n)
{MR:=MR+MX*MY;
MY:=a[A1]; MX:=x[A2];
A1++; A2--}

37

- 73 -BF - ES

Real-time communication

Why?
Modular system development, support and evolution
Single network vs. wiring harness

What?
Bus-master approach
TDMA, CSMA
Collision handling

Advanced material:
FlexRay

- 74 -BF - ES

TDMA - Time Division Multipl. Access

Operational principle:
Progress of time is divided into TDMA rounds, within which the
individual nodes have private time slots with different phase delay
to start of the round; the slots are non-overlapping

Problems:
Private slots waste bandwith
Need for global clock synchronisation
Number of nodes and their worst-case message lengths need to be
fixed a priori
This leads to either designs using huge safety margins or to
complex interference between node performance and TDMA setup
(lacking separation of concerns between computation and
communication)

38

- 75 -BF - ES

Carrier Sense Multiple Access (CSMA)

Operational principle:
If communication medium is idle then send a message (node
decides on its own — no global authority)

Problems:
Multiple nodes may start almost synchronously, leading to collision
on the medium
Message may be crippled
Message may be overwritten and thus not delivered
If message delivery is vital (std. in ES) then collision has to be
resolved

Collision detection or collision avoidance, arbiting the bus such that at
least one of thecolliding messages is delivered uncrippled

- 76 -BF - ES

Collision handling

39

- 77 -BF - ES

Overview of embedded systems design

- 78 -BF - ES

Scheduling

Why?
Scheduling key issue in implementing RT-systems
Different algorithms with different assumptions and cost

What?
Aperiodic scheduling
Periodic scheduling
Scheduling with resource constraints

Advanced material:
Priority ceiling protocol

40

- 79 -BF - ES

Aperiodic scheduling: EDF – Earliest Deadline First

EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

- 80 -BF - ES

Aperiodic scheduling: Non-preemptive version

Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

When idle schedules are allowed: problem is NP-hard.
Possible approaches:

Heuristics
Bratley’s algorithm: branch-and-bound

41

- 81 -BF - ES

Aperiodic scheduling: : Scheduling
with precedence constraints

Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.

Restrictions:
• Consider synchronous arrival times (all tasks arrive at 0)
• Allow preemption.

Theorem (Lawler 73):
LDF (Latest Deadline First) is optimal wrt. maximum
lateness.

- 82 -BF - ES

Periodic scheduling: EDF

Theorem: A set of periodic tasks τ1, ..., τn with Di = Ti
is schedulable with EDF iff U ≤ 1.

EDF is applicable to both periodic and a-periodic tasks.

If there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since

They are simpler due to fixed priorities
⇒ use in “standard OS” possible
sorting wrt. to deadlines at run time is not needed

42

- 83 -BF - ES

Rate monotonic scheduling (RM)

Rate monotonic scheduling (RM) (Liu, Layland ’73):
Assign fixed priorities to tasks τi:

• priority(τi) = 1/Ti

• I.e., priority reflects release rate
Always execute ready task with highest priority
Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling algorithms.

- 84 -BF - ES

The priority inversion problem

normal execution critical region
priority(J1) > priority(J2) > priority(J3)

Blocking time equal to length of critical section +
computation time of J2.
Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

43

- 85 -BF - ES

Coping with priority inversion:
The priority inheritance protocol

Idea of priority inheritance protocol:
If a task Jh blocks, since another task Jl with lower priority owns
the requested resource, then Jl inherits the priority of Jh.
When Jl releases the resource, the priority inheritance from Jh is
undone.
Rule: Tasks always inherit the highest priority of tasks blocked
by it.

- 86 -BF - ES

Coming up…

44

- 87 -BF - ES

Thursday

Midterm exam: December 18, 2008, HS I, Math building,
16:15 - 17:45
Open book: bring any handwritten or printed notes, or
any books you like.
Please bring your ID.

