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Timing parameters REVIEW

* Timing parameters of a real-time task J;:

Arrival time a;: time at which task becomes ready for execution

Computation time C;: time necessary to the processor for
executing the task without interruption

Deadline d;: time before which a task should be complete to
avoid damage to the system

Start time s;: time at which a tasks starts its execution
Finishing time f;: time at which task finishes its execution




Timing parameters of periodic tasks  REVIEW

* Phase @;: activation time of first periodic instance

» Period T;: time difference between two consecutive
activations

» Relative deadline D;: time after activation time of an
instance at which it should be complete
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Aperiodic scheduling: REVIEW

EDF — Earliest Deadline First

= EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

= Theorem (Horn '74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.
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Aperiodic scheduling: REVIEW
Non-preemptive version

= Theorem (Jeffay et al. '91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

»= When idle schedules are allowed: problem is NP-hard.

= Possible approaches:
= Heuristics
= Bratley’s algorithm: branch-and-bound
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Periodic scheduling: EDF REVIEW

= Theorem: A set of periodic tasks 14, ..., T, with D, = T,
is schedulable with EDF iff UX 1.

= EDF is applicable to both periodic and a-periodic tasks.

= |f there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since

= They are simpler due to fixed priorities
= use in “standard OS” possible

= sorting wrt. to deadlines at run time is not needed
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Proof of Jackson‘s Theorem

and Horn‘s Theorem
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EDF with multiple processors?
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Multiprocessor Scheduling

Given

* n equivalent processors,

= a finite set M of aperiodic/periodic tasks

find a schedule such that each task always meets its deadline.

Assumptions:

» Tasks can freely be migrated between processors
= at any integer time instant, without overhead
= however: no task may run on two processors simultaneously

= All tasks are preemptable
= at any integer time instant, without overhead
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Game-theoretic problem formulation

= Associate possible states of the system with positions
on a game board.

= Associate choices one can influence in order to solve
the problem with own moves on the game board.

= Associate choices one cannot influence with
opponent‘'s moves.

» |dentify feasible solutions with winning positions.

Problem solution: find a winning strategy
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Game-board representation

Remaining

TRl o When tasks are rel d, they inserted
computation time

into the game board according to their WCET
and laxity (= deadline — remain. comp. time).

In every time scheduling step / of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

eaching the x—axis have n allocated all
the cumputdtlon tlrne th nr’erj and are 1hu5

some node reaches the s

It is won if no node remains on the board.

Laxity
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Game-board representation

and laxity (= deadline — remain. comp. time).

In every time scheduling step / turn of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

en allocated all
I are thus
remov
re|

The game is lost (i.e., the schedule is infeasible) if
some node reaches the nd quadrant.

It is won if no node remains on the board.
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Extensions

= Resource conflicts: restricted move rules
= Precedence constraints: restricted move rules

» Periodic tasks: opponent's moves insert new nodes;
game won if no task ever reaches second quadrant
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Game-theoretic solution

Theorem: In games with

= finitely many positions on the game board, and
= complete information

there is a always a winning strategy for one of the two players;
it can be constructed effectively.
q:\"&rm‘\/i' conbvetio— . \Roun
_ Skt UK (& iy
Cow v MU 4
O P L A e (s
vt ¥ et Sk bk
[ O P

= veqn : Y.
However: high complexity = predefined str

BF - ES

- 19-

LLF (Least Laxity First)

Remaining

computation time ing to their WCET
— remain. comp. time).

2p / turn of the game:
.
— the rest moves 1 to the left

LLF is optimal.

BF - ES - 20-

10



Schedulability NUPR
1N
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Within a set M of aperiodic tasks, we identify three classes
with respect to the next k time units starting at time t:

1. Tasks that have to be fully run within the next k time units:

FR(t, k) ={i € M | Di(t) < k}

2. Tasks that have to be partially run within the next k time units:
PR(t,k) ={ie M | Li(t) < k AD;t) > k}
3. Tasks that need not be run within the next k time units:

NN(t, k) ={i € M | Li(t) > k]
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Surplus computing power

Lemma: SCP(0,k)>0 for all k>0 is a necessary condition
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ATheorem: If all tasks are released at time 0, thence¢r
SCP(0,k)>0 for all k>0 is a necessary and sufficient
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Online scheduling?

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.
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Periodic periodic tasks

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.
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Scheduling idea

1. Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.
Slice length T I i e

2. Within each time slice, allocate processor time in proportion to the
utilization U; = S+ originating from the various tasks.

Processing time per slice r; { ;
Hence, each task runs Sty = TS = C; time units within its period.

I

. Allocate r; according to the following algorithm
Look for the first processor proc; that has free capacity in its time slices.
Allocate that portion of r; to proc; that proc; can accommodate.
If all of r; has been allocated then proceed with the next task (goto step
a).
Otherwise allocate the remainder of r; to proc; ;1.
proc; 1 has enough spare capacity as it has not previously been used
and r; < T due to U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.
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