
1

- 1 -BF - ES

Embedded Systems 18

- 2 -BF - ES

Timing parameters
Timing parameters of a real-time task Ji:

Arrival time ai: time at which task becomes ready for execution
Computation time Ci: time necessary to the processor for
executing the task without interruption
Deadline di: time before which a task should be complete to
avoid damage to the system
Start time si: time at which a tasks starts its execution
Finishing time fi: time at which task finishes its execution

Ji ai si fi di

Ci

0

REVIEW

2

- 3 -BF - ES

Timing parameters of periodic tasks

Phase Φi: activation time of first periodic instance
Period Ti: time difference between two consecutive
activations
Relative deadline Di: time after activation time of an
instance at which it should be complete

τi Φi

Ci

Ti

Di

Φi+(k-1)Ti

Instance kInstance 1

0

REVIEW

- 4 -BF - ES

Aperiodic scheduling:
EDF – Earliest Deadline First

EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

REVIEW

3

- 5 -BF - ES

Aperiodic scheduling:
Non-preemptive version

Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

When idle schedules are allowed: problem is NP-hard.
Possible approaches:

Heuristics
Bratley’s algorithm: branch-and-bound

REVIEW

- 6 -BF - ES

Periodic scheduling: EDF

Theorem: A set of periodic tasks τ1, ..., τn with Di = Ti
is schedulable with EDF iff U ≤ 1.

EDF is applicable to both periodic and a-periodic tasks.

If there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since

They are simpler due to fixed priorities
⇒ use in “standard OS” possible
sorting wrt. to deadlines at run time is not needed

REVIEW

4

- 7 -BF - ES

Proof of Jackson‘s Theorem
and Horn‘s Theorem REVIEW

- 8 -BF - ES

EDF with multiple processors?

5

- 9 -BF - ES

Multiprocessor Scheduling

Given
n equivalent processors,
a finite set M of aperiodic/periodic tasks

find a schedule such that each task always meets its deadline.

Assumptions:
Tasks can freely be migrated between processors

at any integer time instant, without overhead
however: no task may run on two processors simultaneously

All tasks are preemptable
at any integer time instant, without overhead

- 10 -BF - ES

Game-theoretic problem formulation

Associate possible states of the system with positions
on a game board.
Associate choices one can influence in order to solve
the problem with own moves on the game board.
Associate choices one cannot influence with
opponent‘s moves.
Identify feasible solutions with winning positions.

Problem solution: find a winning strategy

6

- 11 -BF - ES

Game-board representation

- 12 -BF - ES

Game-board representation

7

- 13 -BF - ES

Game-board representation

- 14 -BF - ES

Game-board representation

8

- 15 -BF - ES

Game-board representation

- 16 -BF - ES

Game-board representation

9

- 17 -BF - ES

Game-board representation

- 18 -BF - ES

Extensions

Resource conflicts: restricted move rules

Precedence constraints: restricted move rules

Periodic tasks: opponent‘s moves insert new nodes;
game won if no task ever reaches second quadrant

10

- 19 -BF - ES

Game-theoretic solution

Theorem: In games with
finitely many positions on the game board, and
complete information

there is a always a winning strategy for one of the two players;
it can be constructed effectively.

However: high complexity ⇒ predefined strategies preferred.

- 20 -BF - ES

LLF (Least Laxity First)

LLF is optimal.

11

- 21 -BF - ES

Schedulability

Within a set M of aperiodic tasks, we identify three classes
with respect to the next k time units starting at time t:

- 22 -BF - ES

Surplus computing power

Lemma: SCP(0,k)≥0 for all k>0 is a necessary condition
for schedulability.

12

- 23 -BF - ES

Surplus computing power

Theorem: If all tasks are released at time 0, then
SCP(0,k)≥0 for all k>0 is a necessary and sufficient
condition for schedulability.

- 24 -BF - ES

13

- 25 -BF - ES

- 26 -BF - ES

14

- 27 -BF - ES

Online scheduling?

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.

- 28 -BF - ES

15

- 29 -BF - ES

Periodic periodic tasks

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U ≤ n.

- 30 -BF - ES

Scheduling idea

1. Divide the time line into time slices such that each
period of each process is divided into an integral
number of time slices.

2. Within each time slice, allocate processor time in
proportion to the utilization Ui = Ci / Ti originating from
the various tasks.

