











































Surplus computing power  
Surplus computing power  

$$\begin{aligned}
SCP(t,k) = kn- \int_{i \in FR(t,k)} Ci(t) \\
i \in FR(t,k)
\end{aligned}$$
Theorem: If all tasks are released at time 0, then corn  
SCP(0,k) \ge 0 for all k>0 is a necessary and sufficient  
condition for schedulability.  
Use that ket we deadline is twisted uring LLF.  
Frof by induction and t'  
1) SCP(t,k) 7:0 Hk => # of taken an the  
c-axis is  $z h$ .  
2) SCP(t(k) 7:0 Hk implies that  
scr (t+1,k) 7:0 Hk implies that  
scr (t+1,k) 7:0 FK implies that  
scr (t+1,k) 7:0 => n 7:  $\int (i(t) + \int (1-1i(t))$   
is FR(t(1)) is eR(t(n))  
H f Have an c-axin.  
BF-ES
  
-23-

Care 2' Som of the total Aft of L=K  
have arrived by baiseted more.  

$$\begin{aligned}
& \begin{array}{c} & & & \\ & & & \\ & & & \\ \hline \\ & & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\$$

$$\begin{aligned} C_{n+1} & d_{n+1} & f_{n+1} & f_{n+1} & f_{n+1} & f_{n+1} \\ f_{n+1} & f_{n+1} & f_{n+1} \\ c_{n+1} & f_{n+1} \\ c_$$



| Periodic periodic tasks                                                                                           |        |
|-------------------------------------------------------------------------------------------------------------------|--------|
| <b>Theorem:</b> A necessary and sufficient condition for the schedulability of periodic tasks is that $U \le n$ . |        |
| neary V.                                                                                                          |        |
|                                                                                                                   |        |
|                                                                                                                   |        |
|                                                                                                                   |        |
| BF - ES                                                                                                           | - 29 - |

| Scheduling idea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Divide the time line into time slices such that each period of each process is divided into an integral number of time slices.<br>Slice length $T = GCD(T_1,, T_n)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Within each time slice, allocate processor time in proportion to the utilization $U_i = \frac{C_i}{T_i}$ originating from the various tasks.<br>Processing time per slice $r_i = TU_i = T\frac{C_i}{T_i}$ .<br>Hence, each task runs $\frac{T_i}{T}r_i = \frac{T_i}{T}T\frac{C_i}{T_i} = C_i$ time units within its period.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>3. Allocate r<sub>i</sub> according to the following algorithm <ul> <li>(a) Look for the first processor proc<sub>j</sub> that has free capacity in its time slices.</li> <li>(b) Allocate that portion of r<sub>i</sub> to proc<sub>j</sub> that proc<sub>j</sub> can accommodate.</li> <li>(c) If all of r<sub>i</sub> has been allocated then proceed with the next task (goto step a).</li> <li>(d) Otherwise allocate the remainder of r<sub>i</sub> to proc<sub>j+1</sub>.<br/>proc<sub>j+1</sub> has enough spare capacity as it has not previously been used and r<sub>i</sub> ≤ T due to U<sub>i</sub> ≤ 1. Furthermore, due to r<sub>i</sub> ≤ T, we don't generate temporal overlap between the two partial runs of task i.</li> </ul> </li> </ul> |
| BF - ES - 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |