
1

- 1 -BF - ES

Embedded Systems 2

- 2 -BF - ES

Exam Policy

� Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester
exams:

� > 50% of points in homeworks and
� > 50% of points in midterm exam
Final grade:
� best grade in end-of-term or end-of-semester exam

Note: exam policy has been modified to ensure consistency with
module description.

2

- 3 -BF - ES

StateCharts

� StateCharts = the only unused combination of
„flow“ or „state“ with „diagram“ or „charts“

� Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +

Broadcast communication
� Industry standard for modelling automotive applications
� Appear in UML (Unified Modeling Language), Stateflow,

Statemate, …
� Warning: Syntax and Semantics may vary.

REVIEW

- 4 -BF - ES

Duration of computations

� Basic semantic problem: “uncooperative environment”
[Koymans, Kuiper, Zijlstra 1988] proceeds at its own,
asynchronous pace

=>Proceeds during computations, data sampling, etc., of
the embedded system

� Induces design decisions for specification formalisms:
� How much time shall computational actions of the ES take?
� Shall data sampling take time; if so, how much?
� What happens to data sampling upon fast environment

dynamics?

3

- 5 -BF - ES

Duration of computations

� Engineers’ familiarity with automata-based design calculi
for synchronous circuits makes reuse of the
computational model of Mealy automata attractive:
� Input sampling is instantaneous
� State changes are instantaneous
� Output delivery is instantaneous
� All three happen in the same physical time instant
� These instants of computational action are separated by phases

of idling, where the automaton state is constant

� This abstraction of computation time being negligible
has become known as the “synchrony hypothesis”
� Frees early design stages from worries about implementation

details

- 6 -BF - ES

Semantics of StateCharts

� Execution of a StateChart in its environment consists of
instantaneous StateChart actions interspersed by durational
environment actions

4

- 7 -BF - ES

Hierarchy

In StateCharts, states are either

� basic states, or

� AND-super-states, or

� OR-super-states.

REVIEW

- 8 -BF - ES

OR-super-states

superstate

substates

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

REVIEW

5

- 9 -BF - ES

Priority rules

� Priority of „higher level“ transitions over „lower level“ transitions

OR-type hierarchy can be explained by flattening out the
hierarchical diagram.

REVIEW

- 10 -BF - ES

Default state mechanism

� Filled circle indicates
sub-state entered
whenever super-
state is entered.

� Not a state by itself!
� Allows internal

structure to be
hidden for outside
world

REVIEW

6

- 11 -BF - ES

History

S

DC CO

ID OP

SL FA

Default states

Active states H

History connectors
remember states
at the same level
as the history
connector!

REVIEW

- 12 -BF - ES

Deep history

S

DC CO

ID OP

SL FA

Default states

Active states H*

Deep history
connectors H*
remember basic
states!

*

REVIEW

7

- 13 -BF - ES

Connectors

� Example: Traffic light control with two programs

- 14 -BF - ES

Condition connector

8

- 15 -BF - ES

Join and Fork Connectors

- 16 -BF - ES

Compound transitions

t1 and t2 must
be executed

together

9

- 17 -BF - ES

General form of edge labels

Meaning:
� Transition may be taken, if event occurred in last step and

condition is true
� If transition is taken, then reaction is carried out.

Conditions:
� Refer to values of variables

Actions:
� Can either be assignments for variables or creation of events

Example:
� a & [x = 1023] / overflow; x:=0

event [condition] / action

REVIEW

- 18 -BF - ES

Variables with complex data types
Problem of classical automata:

� Both control and data have to be represented as graphical states
Here:

� Include typed variables (e.g. integers, reals, strings, records) to represent data
� Both „graphical states“ and variables contribute to the state of the statechart.
� Notation:

• „graphical states“ = states
• „graphical states“ + variables = status

REVIEW

10

- 19 -BF - ES

Events, conditions, actions

� Possible events (incomplete list):
� Atomic events

• Basic events: A, B, BUTTON_PRESSED
• Entering, exiting a state: en(S), ex(S)
• Timeout events
• …

� Compound events: logical connectives and, or, not

� Possible conditions (incomplete list):
� Atomic conditions

• Constants: true, false
• Condition variables (i.e. variables of type boolean)
• Relations between values: X > 1023, X ≤ Y
• Residing in a state: in(S)
• …

� Compound conditions: logical connectives and, or, not

REVIEW

- 20 -BF - ES

Events, conditions, actions

� Possible actions (incomplete list):
� Atomic actions

• Emitting events: E (E is event variable)
• Assignments: X := expression
• Scheduled actions: sc!(A, N)

(means perform action after N time units)
� Compound actions

• List of actions: A1; A2; A3
• Conditional action: if cond then A1 else A2

REVIEW

11

- 21 -BF - ES

Concurrency
� AND-super-states: FSM is in all (immediate) sub-

states of a AND-super-state; Example:

REVIEW

- 22 -BF - ES

Entering and leaving AND-super-states

� Line-monitoring and key-monitoring are entered and left,
when key-on and key-off events occur.

incl.

REVIEW

12

- 23 -BF - ES

Concurrency

� Example for active states:

� Classical automata have to compute product automata
to express concurrency

⇒ structural information is lost
⇒ increase in size

answ.

off on

l-m. k-m.

K.w
.

K.p.

Default states

Active states

L.w
.

L.p.

AND-super-state

REVIEW

- 24 -BF - ES

Timers

� Since time needs to be modeled in embedded
systems, timers need to be modeled.

� In StateCharts, special edges can be used for
timeouts.

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.
If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

REVIEW

13

- 25 -BF - ES

Using timers in answering machine REVIEW

- 26 -BF - ES

Timeout events (general)

� Timeout event tm(e,d):
� Timeout event tm(e, d) is emitted d time units after event e has

occured
⇒ a timer can be simulated by a state S where the timers‘ timeout

events are replaced by tm(en(S), d)

14

- 27 -BF - ES

Example: Chess Clock

External events:

• key_on

• key_off

• black_moves

• white_moves

Internally generated events:

• white_wins

• black_wins

• tick

Variables:

• white

• black

- 28 -BF - ES

15

- 29 -BF - ES

Semantics of StateCharts

� Execution of a StateChart model consists of a sequence
of steps

� A step leads from one status to another

� One step:
� Given:

• Current system status si

• Current time t
• External changes Δ

� Find:
• New status si+1

- 30 -BF - ES

External changes

� External data and external events constitute the
interface between system and environment.

� The environment provides external events at certain
times and changes external data at certain times.

� External events not yet seen in the previous step and
changes of external data not seen in the previous step
are called external changes for the current step.

16

- 31 -BF - ES

Status of the system

The current status of the system is given by
� set of active states
� current values of variables
� the generated events from previous step
� the values of the history connectors
� set of all timeout events <tm(e, d), n> in the state chart

with „emission times“ n (times n are initially set to ∞)
� set of currently scheduled actions <sc(a, d), n> with their

times n

- 32 -BF - ES

Overview of a step

� Two stages
� Preparation (for timeout events and scheduled actions)
� Execution

� Preparation stage:
� Fix scheduled actions that will be executed
� Fix timeout events that will be generated

� Execution stage:
� Determine the set of transitions to be taken based on internal

and external events and on values of internal and external
variables

� Compute the next states and the reactions (evaluate right hand
sides of assignments)

� Transitions become effective, variables obtain new values.

17

- 33 -BF - ES

Preparation stage of step at time t

� Scheduled actions
� For all currently scheduled actions <sc(a, d) , n)

(i.e. actions scheduled but not yet executed):
• If n ≤ t then execute action a
(execution may lead to new events and changes of variables)

� Timeout events
� For all timeout events <tm(e, d), n> in set of timeout events

• If e is external event not yet seen in previous step or internal
event generated in previous step then n := t + d (current time
is t) („schedule timeout event“)

• Else: If n ≤ t then emit event tm(e,d) and reset n to ∞

- 34 -BF - ES

Execution stage – first part

� Determine the maximal set of transitions to be taken
based on
� internal and external events and
� on values of internal and external variables (→ conditions!)

� Due to concurrency (AND-states) a transition of a set of
states to a set of states is computed.

� Due to non-determinism several choices for the set of
next states are possible
⇒ non-deterministic choice!
⇒ each choice represents one possible behaviour of the system
⇒ The same StateChart with the same sequence of external

changes may have several possible status sequences
Here: Select one subset of enabled transitions leading to a set of

basic states.

18

- 35 -BF - ES

Conflicting transitions

- 36 -BF - ES

Execution stage – second and third part
� Second part: Compute

� the next states and
� the reactions

• Generate events for the next step
• Evaluate right hand sides of assignments, but do not

perform assignments yet

� Third part:
� Transitions become effective:

• assignments are actually made, i.e. variables obtain new
values.

• History connectors are updated.
• Next states become active.

� Separation into parts 2 and 3 guarantees deterministic
and reproducible behavior of parallel assignments.

19

- 37 -BF - ES

Example

� In part 2, variables a and b are assigned to temporary
variables. In part 3, these are assigned to a and b. As a
result, variables a and b are swapped.

� Without this separation, executing the left state first
would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The execution of parallel assignment
would be nondeterministic.

- 38 -BF - ES

Reflects model of clocked hardware

� In an actual clocked (synchronous) hardware system,
both registers would be swapped as well.

Same separation into phases found in other languages
as well, especially those that are intended to model
hardware.

Same separation into phases found in other languages
as well, especially those that are intended to model
hardware.

20

- 39 -BF - ES

Broadcast mechanism

� Values of variables are visible to all parts of the StateChart
model.
� New values become effective in part 3 of the execution

stage for the current step and are obtained by all parts of
the model in the following step.

) StateCharts implicitly assumes a broadcast mechanism
for variables.

) StateCharts is appropriate for local control systems (☺),
but not for distributed applications for which updating
variables might take some time (/).

) StateCharts implicitly assumes a broadcast mechanism
for variables.

) StateCharts is appropriate for local control systems (☺),
but not for distributed applications for which updating
variables might take some time (/).

- 40 -BF - ES

Time models

� External events and external changes of variables are
associated with physical times.

� But how does time proceed internally?
� How many steps are performed before external changes

are evaluated?

21

- 41 -BF - ES

The synchronous time model

� A single step every time unit.
� If the current step is executed at time t, then the next

step is executed at time t+1.

⇒ Events and variable changes are communicated
between different states during one time unit.

⇒ External changes are only accumulated during one
time unit.

- 42 -BF - ES

The super-step time model (1)

� A step of the statechart does not need time.
� Super-steps are performed:

� A super-step is a sequence of steps.
� A super-step terminates when the status of the system is stable.
� During a super-step the time does not proceed and thus external

changes are not considered.

� After a super-step, physical time restarts running, i.e.
activity of the environment will be possible again.

� The computation of the statechart is resumed when
� external changes enable transitions in the statechart
� Timeout events enable transitions of the statechart

22

- 43 -BF - ES

The super-step time model (2)
� Two-dimensional time:

� Assumption: Computation time is neglegible compared to dynamics of
the environment.

- 44 -BF - ES

The super-step time model (3)

� During one super-step the number of communications
between different states is not restricted. All
communications are assumed to be performed in zero
time.

� Simplified model for reality.
� Can only be realistic, if

� Discrete computations are fast compared to dynamics of the
environment.

� Discrete computations will be stable after a restricted number of
steps.

� Timeout events can reactivate a statechart
⇒ Possible to specify statecharts which permit progress of

physical time after a limited number of steps and reactivate
themselves via timeout events

23

- 45 -BF - ES

Evaluation of StateCharts (1)

Pros:
� Hierarchy allows arbitrary nesting of AND- and OR-

superstates.
� Formal semantics (defined in a follow-up paper to original

paper).
� Large number of commercial simulation tools available

(StateMate, StateFlow, BetterState, ...)
� Available „back-ends“ translate StateCharts into C or

VHDL, thus enabling software or hardware
implementations.

- 46 -BF - ES

Evaluation of StateCharts (2)

Cons:
� Generated C programs frequently inefficient,
� Not useful for distributed applications,
� No program constructs,
� No description of non-functional behavior,
� No object-orientation,
� No description of structural hierarchy.

24

- 47 -BF - ES

Some general properties of languages
1. Synchronous vs. asynchronous languages

� Description of several (concurrent) processes in many
languages non-deterministic:
The order in which executable tasks are executed is not
specified (may affect result).
� Synchronous languages: based on automata models.

They describe concurrently operating automata. When
automata are composed in parallel, a transition of the
product is made of the "simultaneous" transitions of all of
them.
� Synchronous languages implicitly assume the presence of

a (global) clock. Each clock tick, all inputs are considered,
new outputs and states are calculated and then the
transitions are made.

- 48 -BF - ES

� This requires a broadcast mechanism for all parts of the
model.
� Idealistic view of concurrency.
� Has the advantage of guaranteeing deterministic behavior.

� Statechart steps work synchronously.
� Broadcast of events and variable changes during each step.
⇒ StateCharts is a synchronous language.
⇒ StateCharts are deterministic, if priority rules are introduced for

transitions enabled at the same time.

Some general properties of languages
1. Synchronous vs. asynchronous languages

25

- 49 -BF - ES

Some general properties of languages
2. Properties of processes

� Number of processes
static (suitable for hardware);
dynamic (dynamically changed hardware architecture?)

� Nested declaration of processes
or all declared at the same level

�) StateCharts comprises a static number of
processes and nested declaration of processes.

- 50 -BF - ES

Some general properties of languages
3. Communication paradigms

� Message passing
� Asynchronous message passing = non-blocking

communication
Sender does not have to wait until message has arrived; potential
problem: buffer overflow

� Synchronous message passing = blocking communication,
rendez-vous-based communication
Sender will wait until receiver is ready for receiving message
(“point of communication”)

� Extended rendez-vous
Explicit acknowledge from receiver required. Receiver can do
checking before sending acknowledgement.

26

- 51 -BF - ES

Some general properties of languages
3. Communication paradigms

� Shared memory
Variables accessible to several tasks
� Problem: Concurrent write.
� Critical sections = sections at which exclusive access to some

resource r must be guaranteed.

) StateCharts uses shared memory for communication
between processes.

) StateCharts uses shared memory for communication
between processes.

- 52 -BF - ES

Some general properties of languages
4. Specifying timing

4 types of timing specs required [Burns, 1990]:
� Measure elapsed time

Check, how much time has elapsed since last call
� Means for delaying processes
� Possibility to specify timeouts

We would like to be in a certain state only a certain
maximum amount of time.

� Methods for specifying deadlines
With current languages not available or specified in
separate control file.

) StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs are not
supported.

) StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs are not
supported.

27

- 53 -BF - ES

Hybrid Systems

- 54 -BF - ES

Mode-switching control

28

- 55 -BF - ES

Why environment models?

- 56 -BF - ES

Virtual Prototyping

29

- 57 -BF - ES

Why mathematical models?

- 58 -BF - ES

Open dynamical systems

30

- 59 -BF - ES

Modeling with differential equations

- 60 -BF - ES

Example: spring-mass system

F: force, m: mass, l: length, l0: free length

31

- 61 -BF - ES

Modeling with functional blocks

- 62 -BF - ES

Basic blocks

32

- 63 -BF - ES

Example

- 64 -BF - ES

Compound blocks

33

- 65 -BF - ES

Hybrid Modeling

- 66 -BF - ES

A/D coupling components

34

- 67 -BF - ES

A/D coupling components

- 68 -BF - ES

D/A coupling components

35

- 69 -BF - ES

D/A coupling components

- 70 -BF - ES

D/A coupling components

36

- 71 -BF - ES

Dynamics of networks

- 72 -BF - ES

The sane case

37

- 73 -BF - ES

The insane case

- 74 -BF - ES

Avoiding non-causality

38

- 75 -BF - ES

The simulation loop

- 76 -BF - ES

Iterating discrete transitions

Given the current discrete state and a set of events
1. Evaluate trigger conditions of outgoing transitions
2. Select the enabled transition with highest priority
3. Evaluate its action part
4. Perform action
5. Move control to target state

Procedure is repeated until stable state is reached.

39

- 77 -BF - ES

Iterating continuous evolution

Given the current continuous state vector,
1. Numerically compute the output values of all algebraic

blocks
2. Find out, whether a discretely observable state change

has occurred
3. Use numeric integration to extrapolate state vector to

next time instant
� Most simulation tools offer a selection of integration algorithms
� Step size may be fixed or adaptive

4. Advance time.

- 78 -BF - ES

Problems inherited from continuous simulation

