Embedded Systems 2

BF -ES

Exam Policy

= Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester
exams:

= > 50% of points in homeworks and

= > 50% of points in midterm exam

Final grade:

= best grade in end-of-term or end-of-semester exam

Note: exam policy has been modified to ensure consistency with
module description.

BF -ES

StateCharts REVIEW

StateCharts = the only unused combination of
Jlow* or ,state” with ,diagram“ or ,charts”

= Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +
Broadcast communication

» Industry standard for modelling automotive applications

= Appear in UML (Unified Modeling Language), Stateflow,
Statemate, ...

= Warning: Syntax and Semantics may vary.

BF - ES - 3-

Duration of computations

= Basic semantic problem: “uncooperative environment”
[Koymans, Kuiper, Zijlstra 1988] proceeds at its own,
asynchronous pace
=>Proceeds during computations, data sampling, etc., of
the embedded system
» Induces design decisions for specification formalisms:
= How much time shall computational actions of the ES take?

= Shall data sampling take time; if so, how much?

= What happens to data sampling upon fast environment
dynamics?

BF - ES S 4.

Duration of computations

» Engineers’ familiarity with automata-based design calculi
for synchronous circuits makes reuse of the
computational model of Mealy automata attractive:

= |nput sampling is instantaneous

= State changes are instantaneous

= Qutput delivery is instantaneous

= All three happen in the same physical time instant

= These instants of computational action are separated by phases
of idling, where the automaton state is constant

= This abstraction of computation time being negligible
has become known as the “synchrony hypothesis”

= Frees early design stages from worries about implementation
details

BF - ES - 5-

Semantics of StateCharts

= Execution of a StateChart in its environment consists of
instantaneous StateChart actions interspersed by durational
environment actions

]
]]
— T~

BF - ES - 6-

Hierarchy REVIEW

In StateCharts, states are either

» basic states, or
= AND-super-states, or

= OR-super-states.

BF - ES -7-

OR-super-states REVIEW

FSM will be in exactly
one of the substates of S
if S is active

(eitherin AorinBor..)

BF -ES - 8-

Priority rules REVIEW

= Priority of ,higher level” transitions over ,lower level transitions

OR-type hierarchy can be explained by flattening out the
hierarchical diagram.

BF - ES _9-

Default state mechanism REVIEW
[s]
. . . . f
= Filled circle indicates . ‘ ‘
sub-state entered o : h o ' o e
whenever super- ™~ ”
state is entered. %
= Not a state by itself!
= Allows internal 5] 1
structure to be ?
hidden for outside \ m
world OO 020
\é
m

BF - ES - 10-

History REVIEW

P o

[SEHSOR._DISCOMKECTED |

meassm A
History connectors
O Default states remember states
. at the same level
O Active states as the history
connector!
BF - ES -11-
Deep history REVIEW
P o

[SEHSOR._DISCOMKECTED |

meassm

Deep history
connectors H*
remember basic
states!

O Default states

O Active states

BF - ES -12-

Connectors

= Example: Traffic light control with two programs

A |". ,l" _,r]I ,"'. A
‘! ||'I Ii' 'lhl—\ Ilf! I||II I'.| ~
30s - timeout/a Ymin
e . =t A
.\ 1 tineont’b I [Prog = A]
o
—— - (‘\,
.
i i
timeout/b l [Prog = B]
_ J'i \ ||‘II ."'. | _ N N
VY -~
30s . neben voll/a |
e)
BF - ES - 13-
Condition connector
R
[cl]l/B T
E[CL]/A;B T
E/A e — — N
)
i u
[c2] »
E[c2]/A
~

BF - ES o

Join and Fork Connectors

BF - ES - 15-

Compound transitions

u - t1 and t2 must
£ be executed
together
:
! tl: e\'lficll
[j/ N: ev2fact2
{) {ev] and ev2) |C3.| Jucll:ucl:?:m:ﬂ
w 3 -
3 [ca]gl ‘
. —_—
15 v (evl and ev2) [C4] / act];act2;act4
T

BF - ES - 16 -

General form of edge labels REVIEW

. event [condition] / action .

Meaning:
= Transition may be taken, if event occurred in last step and
condition is true
= |If transition is taken, then reaction is carried out.

Conditions:
= Refer to values of variables

Actions:
= Can either be assignments for variables or creation of events

Example:
= a&[x=1023]/ overflow; x:=0

BF - ES - 17 -

Variables with complex data types REVIEW

Problem of classical automata:
= Both control and data have to be represented as graphical states

Here:
= Include typed variables (e.g. integers, reals, strings, records) to represent data
= Both ,graphical states" and variables contribute to the state of the statechart.

= Notation:
» ,graphical states" = states
» ,graphical states" + variables = status

A 10-Bit counter, counting on event a and issuing overflow after 1024 occurrences:

As FSM: As Statechart:

(D= oo @ |

* action: event generation and/or
trigger condition: state assignment
events and/or state
predicate

BF - ES - 18-

Events, conditions, actions

= Possible events (incomplete list):

Atomic events
* Basic events: A, B, BUTTON_PRESSED
» Entering, exiting a state: en(S), ex(S)
* Timeout events

Compound events: logical connectives and, or, not

= Possible conditions (incomplete list):

BF - ES

Atomic conditions

Constants: true, false

Condition variables (i.e. variables of type boolean)
Relations between values: X > 1023, X <Y
Residing in a state: in(S)

Compound conditions: logical connectives and, or, not

REVIEW

- 19-

Events, conditions, actions

» Possible actions (incomplete list):

BF - ES

Atomic actions
< Emitting events: E (E is event variable)
e Assignments: X ;= expression

» Scheduled actions: sc!(A, N)
(means perform action after N time units)

Compound actions
» List of actions: Al; A2; A3
« Conditional action: if cond then Al else A2

REVIEW

- 20-

10

Concurrency

REVIEW

= AND-super-states: FSM is in all (immediate) sub-
states of a AND-super-state; Example:

[answering-machine
[on]
(" line-monitoring

[Lwait |
— hangu;_)-
1 (caller)

N Y

T, fing o

Lproc

key-monitoring (excl. on/off)
e kegi Eres_s§d

e \ a
(Kwait { Kproc
S

done

key—ong key—off

o—=toff /I

-

BF - ES - 21-

Entering and leaving AND-super-states REVIEW

 [answering-machine]

line—monitoring

T EEi_ng_hﬂ - i ey pressed - -
(Ewait >|;‘ ':\j{l_piJ i <K\‘Nait 11 » Kproc]

key—monitoring (incl. on/off) ‘I

— \hangup
i (caller)

= Line-monitoring and key-monitoring are entered and left,
when key-on and key-off events occur.

BF - ES - 22.-

11

Concurrency REVIEW

= Example for active states:

;/ Default states

Q Active states

= Classical automata have to compute product automata
to express concurrency

= structural information is lost
= increase in size

BF - ES - 23-

Timers REVIEW

= Since time needs to be modeled in embedded
systems, timers need to be modeled.

= |n StateCharts, special edges can be used for
timeouts.

timeout

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

BF - ES - 24 -

12

Using timers in answering machine REVIEW

Lproc

4s (callee)

N
timeout /\/\/\ T
N,
timeout
8s

= beep
record S||ent

(N A

BF - ES 05

Timeout events (general)

» Timeout event tm(e,d):

= Timeout event tm(e, d) is emitted d time units after event e has
occured

= atimer can be simulated by a state S where the timers' timeout
events are replaced by tm(en(S), d)

BF - ES - 26-

13

Example: Chess Clock

External events:
e key on

* key_off

« black_moves

* white_moves

Internally generated events: Variables:
» white_wins * white
* black_wins * black

e tick

BF - ES

tick [white = 0] / white := white - 1
I—-l running white }J
black_moves white_moves tick [white = 0] / black_wins
| pausing white |

tick [black = 0] / black := black - 1

\——l running black }J

white_moves black_moves tick [black = 0] / white_wins

| pausing black |

timeout [/ tick

IlN I £

kev_on [white := 300, black = 300 key_off

Semantics of StateCharts

= Execution of a StateChart model consists of a sequence
of steps

= A step leads from one status to another

Status Step Status Step Status Step Status
e e L e e L =@ e e e e e =0
= One step:
= Given:
 Current system status s;
» Current time t
« External changes A
= Find:
* New status s,

BF - ES - 29.-

External changes

= External data and external events constitute the
interface between system and environment.

» The environment provides external events at certain
times and changes external data at certain times.

= External events not yet seen in the previous step and
changes of external data not seen in the previous step
are called external changes for the current step.

BF - ES -30-

15

Status of the system

The current status of the system is given by
= set of active states

= current values of variables

» the generated events from previous step
= the values of the history connectors

= set of all timeout events <tm(e, d), n> in the state chart
with ,emission times" n (times n are initially set to oo)

= set of currently scheduled actions <sc(a, d), n> with their
times n

BF - ES S 31-

Overview of a step

= Two stages
= Preparation (for timeout events and scheduled actions)
= Execution

» Preparation stage:
= Fix scheduled actions that will be executed
= Fix timeout events that will be generated

= Execution stage:

= Determine the set of transitions to be taken based on internal
and external events and on values of internal and external
variables

= Compute the next states and the reactions (evaluate right hand
sides of assignments)

= Transitions become effective, variables obtain new values.

BF - ES - 32-

16

Preparation stage of step at time t

= Scheduled actions

= For all currently scheduled actions <sc(a, d) , n)
(i.e. actions scheduled but not yet executed):

« |If n < tthen execute action a
(execution may lead to new events and changes of variables)

» Timeout events
= For all timeout events <tm(e, d), n> in set of timeout events

« If e is external event not yet seen in previous step or internal
event generated in previous step then n :=t + d (current time
is t) (,schedule timeout event")

« Else: If n < tthen emit event tm(e,d) and reset n to oo

BF - ES - 33-

Execution stage — first part

= Determine the maximal set of transitions to be taken
based on
= internal and external events and
= on values of internal and external variables (— conditions!)

= Due to concurrency (AND-states) a transition of a set of
states to a set of states is computed.

= Due to non-determinism several choices for the set of
next states are possible

=- non-deterministic choice!

= each choice represents one possible behaviour of the system

= The same StateChart with the same sequence of external
changes may have several possible status sequences

Here: Select one subset of enabled transitions leading to a set of
basic states.

BF - ES - 34-

17

Conflicting transitions

-
U

-~
>

t3

al
8

J

—
(.

BF - ES - 35-

Execution stage — second and third part

= Second part: Compute
= the next states and
= the reactions
« Generate events for the next step

 Evaluate right hand sides of assignments, but do not
perform assignments yet

* Third part:
= Transitions become effective:

« assignments are actually made, i.e. variables obtain new
values.

 History connectors are updated.
* Next states become active.

= Separation into parts 2 and 3 guarantees deterministic
and reproducible behavior of parallel assignments.

BF - ES - 36-

18

Example

swap

ela:=b e/b:=a

= |In part 2, variables a and b are assigned to temporary
variables. In part 3, these are assigned to a and b. As a
result, variables a and b are swapped.

= Without this separation, executing the left state first
would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The execution of parallel assignment
would be nondeterministic.

BF - ES - 37-

Reflects model of clocked hardware

clock -e——=4
—

= In an actual clocked (synchronous) hardware system,
both registers would be swapped as well.

Same separation into phases found in other languages
as well, especially those that are intended to model
hardware.

BF - ES - 38-

19

Broadcast mechanism

= Values of variables are visible to all parts of the StateChart
model.
= New values become effective in part 3 of the execution

stage for the current step and are obtained by all parts of
the model in the following step.

& StateCharts implicitly assumes a broadcast mechanism
for variables.

@ StateCharts is appropriate for local control systems (©),
but not for distributed applications for which updating
variables might take some time (®).

BF - ES - 39-

Time models

= External events and external changes of variables are
associated with physical times.

= But how does time proceed internally?

= How many steps are performed before external changes
are evaluated?

BF -ES - 40-

20

The synchronous time model

= A single step every time unit.

= |f the current step is executed at time t, then the next
step is executed at time t+1.

= Events and variable changes are communicated
between different states during one time unit.

=- External changes are only accumulated during one
time unit.

BF - ES - 41 -

The super-step time model (1)

= A step of the statechart does not need time.
= Super-steps are performed:
= A super-step is a sequence of steps.
= A super-step terminates when the status of the system is stable.

= During a super-step the time does not proceed and thus external
changes are not considered.

= After a super-step, physical time restarts running, i.e.
activity of the environment will be possible again.

» The computation of the statechart is resumed when
= external changes enable transitions in the statechart
= Timeout events enable transitions of the statechart

BF - ES S 42-

21

The super-step time model (2)

= Two-dimensional time:

A :
No. of discrete °
computzslrtéon discrete activity ceases, -
Ps s oy ® ——-—-----1
{ progress of physical e Continuous phase:
y fime starts again ® Phys. time advances,
o no discrete steps
10+ °®
e
e | Discrete activity:
e ' no progress of physical time involved;
® | continuous activity frozen
5+ ®
*———————
° ’L A discretely perceptible event (threshold, elapse of clock)
:: occurs, starting discrete activity
0

Physical time >
= Assumption: Computation time is neglegible compared to dynamics of
the environment.

BF - ES - 43-

The super-step time model (3)

= During one super-step the number of communications
between different states is not restricted. All
communications are assumed to be performed in zero
time.

» Simplified model for reality.

= Can only be realistic, if

= Discrete computations are fast compared to dynamics of the
environment.

= Discrete computations will be stable after a restricted number of
steps.
» Timeout events can reactivate a statechart

= Possible to specify statecharts which permit progress of
physical time after a limited number of steps and reactivate
themselves via timeout events

BF - ES - 44 -

22

Evaluation of StateCharts (1)

Pros:

= Hierarchy allows arbitrary nesting of AND- and OR-
superstates.

» Formal semantics (defined in a follow-up paper to original
paper).

» Large number of commercial simulation tools available
(StateMate, StateFlow, BetterState, ...)

= Available ,back-ends* translate StateCharts into C or

VHDL, thus enabling software or hardware
implementations.

BF - ES

- 45-

Evaluation of StateCharts (2)

Cons:

BF - ES

Generated C programs frequently inefficient,
Not useful for distributed applications,

No program constructs,

No description of non-functional behavior,
No object-orientation,

No description of structural hierarchy.

- 46 -

23

Some general properties of languages
1. Synchronous vs. asynchronous languages

Description of several (concurrent) processes in many
languages non-deterministic:

The order in which executable tasks are executed is not
specified (may affect result).

Synchronous languages: based on automata models.
They describe concurrently operating automata. When
automata are composed in parallel, a transition of the
product is made of the "simultaneous" transitions of all of
them.

Synchronous languages implicitly assume the presence of
a (global) clock. Each clock tick, all inputs are considered,
new outputs and states are calculated and then the
transitions are made.

BF - ES - 47 -

Some general properties of languages
1. Synchronous vs. asynchronous languages

BF -

This requires a broadcast mechanism for all parts of the
model.

Idealistic view of concurrency.

Has the advantage of guaranteeing deterministic behavior.

Statechart steps work synchronously.
= Broadcast of events and variable changes during each step.
= StateCharts is a synchronous language.

= StateCharts are deterministic, if priority rules are introduced for
transitions enabled at the same time.

ES - 48 -

24

Some general properties of languages
2. Properties of processes

= Number of processes

static (suitable for hardware);

dynamic (dynamically changed hardware architecture?)
= Nested declaration of processes

or all declared at the same level

» & StateCharts comprises a static number of
processes and nested declaration of processes.

BF - ES - 49-

Some general properties of languages
3. Communication paradigms

= Message passing
= Asynchronous message passing = non-blocking
communication

Sender does not have to wait until message has arrived; potential
problem: buffer overflow

= Synchronous message passing = blocking communication,
rendez-vous-based communication
Sender will wait until receiver is ready for receiving message
(“point of communication”)

= Extended rendez-vous
Explicit acknowledge from receiver required. Receiver can do
checking before sending acknowledgement.

BF - ES - 50-

25

Some general properties of languages
3. Communication paradigms

= Shared memory
Variables accessible to several tasks
= Problem: Concurrent write.

= Critical sections = sections at which exclusive access to some
resource r must be guaranteed.

& StateCharts uses shared memory for communication
between processes.

BF - ES - 51-

Some general properties of languages
4. Specifying timing

4 types of timing specs required [Burns, 1990]:
= Measure elapsed time
Check, how much time has elapsed since last call
= Means for delaying processes
» Possibility to specify timeouts
We would like to be in a certain state only a certain
maximum amount of time.
= Methods for specifying deadlines
With current languages not available or specified in
separate control file.

& StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs are not
supported.

BF - ES o 52.-

26

Hybrid Systems

Component 1 Component 1
W s,
. - =
Compaonent 2
! Y
S v
: : ~{o>—*
= = %
Discrete ™
Component n Component m mode switch |
ey I LI
r e r
Environment Controller
4 ; .fnrer-‘ . }
face
System model
BF -ES - 53-
disturbances { “noise”)
environmental observable
m_lrl'm-un-; state
contref
" Analog |
switch
S .
/.. : E Continuous
Y i———————
e controllers
selection 5
B 7
S \an/
@ ? //
D@/«'qmmn
l/ et of
observable
4 state
setpoints Discrete
supervisor task selection
active conrrol law
BF -ES - 54-

27

Why environment models?

* Testing the embedded system without mimicking (an
approximation of) its environment behaviour may lead to

* design effort invested into unreasonable or even impossible
interaction scenarios,

* overlooking critical scenarios,
* impossibility to assess criticality of a situation.
* Testing the embedded system within (a prototype of) the real
environment
* may incur intolerable risk,
* may incur intolerable cost,
* is often impossible due to the schedule of product design,
* is more expensive when exploring the design space.

BF - ES - 55-

Virtual Prototyping

Steering

angle Path
Time - Time

Embedded
‘ System

Environment

BF - ES - 56-

28

Why mathematical models?

.ﬁ Mathematical modelling is only approximative due to

* unknown parameters,
* numerical instabilities of simulation algorithms,
* most dynamic models being only approximate.

(=) Itis nevertheless more accurate than mechanical modelling, as
a scale 75 model of e.g. a car

* has 5 the length of the original, travelling with ~ -5 the
speed,

* ha L

the volume of the original, thus ~ 1555

‘ .
S of its mass,

* Consequently, it has E, = Jmv? ~ J152 (‘%“Z)" = 10""Eimg
kinetic energy.
= Testing ESP, ..., on such a device makes no sense.

BF - ES - 57-

Open dynamical systems

disturbances ("noise")
Svsrem

observable
Stete

\ influence)
/ é internal state é

environmental

System boundary

control

* Time is continuous: X,

* internal state is a bunch of real-valued (or complex-valued)
functions of time:
X(.) : Time — R"™,

* observable state is a time-invariant function (usually projection)
thereof,

* environment influence is a bunch of real-valued (or
complex-valued) functions of time: ti(.) : Time — R™.

BF - ES - 58-

29

Modeling with differential equations

1. Add further, derived state components: the derivatives

x(.),x(.),... of the state components.
2. Formulate dynamics as equations between x(.}, x(.), @(.), ...

N.B. Higher-order derivatives x'™', n > 1, can always be removed by
1. adding a fresh state variable y(.),

2. adding the equation y(t) = x'™(t),

3. replacing every occurrence of x'™ ! by y.

BF - ES

- 59.-

Example: spring-mass system

ur) o Basic model:

yt) =
F(t) k(L(t) —Lo)
L(t) = ult)—ylt)
* Replace higher-order derivatives:
Add v(t) =Y (t).
Gives U (t) = v(t)

v(t) = = (ult)—ylt)—1)

m

F: force, m: mass, I length, |,: free length

BF - ES - 60-

30

Modeling with functional blocks

* Dynamic system is a network of basic blocks:

input " output
——*| function - -

* Blocks are connected via directed links that share a state
variable

BF - ES - 61-

Basic blocks

Basic blocks are signal transducers with a ‘simple’ characterization
in the time domain, e.g.
* ‘algebraic’ blocks: output is a time-invariant function of input:

input oulput

out(t) = f (in(t))

* state-holding blocks: integrators & friends, e.g.

t
o ’ i 1/s
out(t) = :mf—i—J in(u) du pul_ S oulpt o

0

BF - ES

- 62-

31

Example

* DE: Y (t) = v(t), y(0)
vit) = E(ut)—ylt)—L), v(0) = 0
* After integration: y(t) = 1+ [jv(z)dz
v(t) = 0+ [3E (ulz) —ylz) —lo)dz

¢ Functional block model:

/s Vv If“s y

L
1

BF - ES - 63-

Compound blocks

* Comprise multiple basic blocks
* Hide the internal state spaces and internal observables
= yields a new, non-elementary transducer.

®

P , s |
0] v y |
P "- -~ P -

BF - ES - 64-

32

Hybrid Modeling

Rationale: Used to model

1. advanced control techniques (e.g., mode-switching control),

2. embedded system & environment in combination (“Virtual
prototyping”).
= Need a seamless semantic integration of e.g.
* continuous signal transducers,
* A/D & D/A functional blocks,
* FSMs / Statecharts.

BF - ES - 65-

A/D coupling components

have an idealized, delay-free semantics:
* Threshold sensor:

* Analog input i: Time — R,
* digital output o : Time — BB,
* dynamics: o(t) = (i(t) > c).

BF - ES - 66 -

33

A/D coupling components

* A/D converter:

* Analog input i: Time — R,
* n-Bit digital output o : Time — B™,
* dynamics:
o(t) such that [i(t) — £} ; 2%V oy (t)| is minimal.

BF - ES - 67-

D/A coupling components

* Analog switch:

|
58

* Analog inputs iy 1 : Time — R,
digital input s : Time — B,
analog output o : Time — R,

. (1) , if s(t)
d : Olt) = SN
YRAMIGE: Si%) { Bo(t) , if—s(t)

BF - ES - 68-

34

D/A coupling components

¢ D/A converter:

* n-Bit digital input i : Time — B",
* Analog output o : Time — R,
e dynamics: o(t) = L}, 2%V, ().

BF - ES - 69-

D/A coupling components

* Resettable integrator:

—)’/&

A

* Analog inputs/output i, rv, 0 : Time — R,
* Digital input v : Time — B,

* dynamics: o(t) = m(t,)+ [, i(t)dt , where
t: = sup{t' <t|r{t))

BF - ES - 70-

35

Dynamics of networks

1. The individual blocks impose relations between their input and
output waveforms.

2. These relations are adequately covered by the aforementioned
characteristic equations of the various basic blocks.

3. Consequently, the dynamics of a network of basic blocks
coincides to (solutions of) the conjunction of the characteristic
equations of the entailed blocks.

BF - ES - 71 -

The sane case

I/s |, /s | v

BF - ES - 72-

36

The insane case

Analog
| il | switch
: \. = 1

i0)

>0

- 1 ,ifo(t) >0
)0 ,ifo(t) <0

BF - ES - 73-

Avoiding non-causality

1. Simulink (and many other languages) forbids delay-free loops:

* each loop in the “circuit” has to contain at least one delaying
element
® an integrator

* adelay block
. Py

* if a two-dimensional time model is adopted, even 5-delays
suffice!

2. some modeling frameworks interpret delay-free loops as fixed
point equations
* try to solve these equations
* solution is taken if it is unique

BF - ES - 74 -

The simulation loop

Initialize Step stablostatle ™ Update.
— : = = ——m= D/A components
variables discrete state reached?) yos TN el ok
f—‘.m
Iterate discrete transitions
Update i g discrately Advance
L—— A/D components o percepiible stale contin. stale —e—
(AD, thresholds, ..) |z 1" . change? il dlock)
|
|
Iterate continuous evolution phases
BF - ES

Iterating discrete transitions

Given the current discrete state and a set of events
1. Evaluate trigger conditions of outgoing transitions
Select the enabled transition with highest priority
Evaluate its action part

Perform action

Move control to target state

a ke

Procedure is repeated until stable state is reached.

BF - ES

"synchronous” activity, i.e.

simulation time advances : no advance of simulation time

Iterating continuous evolution

Given the current continuous state vector,

1. Numerically compute the output values of all algebraic
blocks

2. Find out, whether a discretely observable state change
has occurred

3. Use numeric integration to extrapolate state vector to
next time instant
= Most simulation tools offer a selection of integration algorithms
= Step size may be fixed or adaptive

4. Advance time.

BF - ES - 77 -

Problems inherited from continuous simulation

* Numerical instability
¢ it is non-trivial to select an appropriate integration algorithm &
basic step size
* Tractability
* Trade-off between precision and computational cost
* Handling stiff systems
* Insufficient knowledge of system parameters

* knowledge may be too imprecise to allow for a meaningful
simulation

BF - ES . 78-

39

