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Multiprocessor Scheduling

Given
n equivalent processors,
a finite set M of aperiodic/periodic tasks

find a schedule such that each task always meets its deadline.

Assumptions:
Tasks can freely be migrated between processors

at any integer time instant, without overhead
however: no task may run on two processors simultaneously

All tasks are preemptable
at any integer time instant, without overhead

REVIEW
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Game-board representation REVIEW
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Online scheduling?

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.

REVIEW
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Game-theoretic solution

Theorem: In games with
finitely many positions on the game board, and
complete information

there is a always a winning strategy for one of the two players; 
it can be constructed effectively.

However: high complexity ⇒ predefined strategies preferred.

REVIEW
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LLF (Least Laxity First)

LLF is optimal.

REVIEW
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Periodic periodic tasks

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U ≤ n.

REVIEW
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Scheduling idea

1. Divide the time line into time slices such that each
period of each process is divided into an integral 
number of time slices.

2. Within each time slice, allocate processor time in 
proportion to the utilization Ui = Ci / Ti originating from
the various tasks. 

REVIEW
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Example (2 processors)

633
882
421
TiCii
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Scheduling idea
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Rescheduling fractional parts

Let Xi = T*Ci/Ti - ⎣T*Ci/Ti⎦

In each period, 
allocate in Xi * Ti/T slices: ⎣T*Ci/Ti⎦+1 units
and in all other slices: ⎣T*Ci/Ti⎦ units

This can be done without allowing any task to miss its
deadline: use EDF! 
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Example (2 processors)

633
642
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TiCii
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Extension: Task migration time

Theorem: A necessary and sufficient condition for
scheduling periodic tasks on n processors is
U ≤ n, 
if the task migration time is one unit.
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Extension: Task migration time

Lemma: If U ≤ n, then within each time slice the tasks
can meet the migration time requirement without missing
deadlines, if the task migration time is one unit.
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Extension: Task migration time

Lemma: If U ≤ n, then between time slices the tasks can
meet the migration time requirement without missing
deadlines, if the task migration time is one unit.
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Example (4 processors)
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Extension: Task migration time

Theorem: Let T=gcd(T1, …, Tm) and let R bet the task
migration time. A sufficient condition for scheduling
the m periodic tasks is that U ≤ n ⋅ (T-R+1)/T.
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Example (4 processors)
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Overview
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Hardware/software codesign

Processor 
P1

Processor 
P2 Hardware

Specification

Mapping
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The Partitioning Problem

Definition: The partitioning problem is to assign
n objects O={o1, …, on} to
m blocks (also called partitions) P={p1, …, pm}
such that
p1 ∪ p2 … ∪ pm = O
pi∩ pj = ∅ for all i≠j, and 
cost c(P) is minimized. 

Cost function (Estimated) quality of design, may include
System price
Latency
Power consumption, …
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Partitioning Methods

Exact methods
Enumeration
Integer Linear Programming (ILP)

Heuristic methods
Constructive methods

• Random mapping
• Hierarchical clustering

Iterative methods
• Kernighan-Lin Algorithm
• Simulated Annealing
• …
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Integer programming models

Ingredients:
Cost function
Constraints

Ingredients:
Cost function
Constraints

Involving linear expressions over 
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said 
to be a 0/1 integer programming problem. 
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Example
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Remarks on integer programming

Integer programming is NP-complete.
Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on 
the size and structure of the problem)
The case of xi ∈ ℝ is called linear programming (LP).
LP has polynomial complexity, but most algorithms are exponential, 
still in practice faster than for ILP problems.
The case of some xi ∈ ℝ and some xi ∈ ℕ is called mixed integer-
linear programming.
ILP/LP models can be a good starting point for modeling, even if in the 
end heuristics have to be used to solve them.
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Integer Linear Programming for Partitioning

Binary variables xi,k
xi,k=1: object oi in block pk

xi,k=0: object oi not in block pk

Cost ci,k if object oi in block pk

Integer linear program:

minimize
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Extensions

Constraints:
Example: maximum number of 
objects in block: hk

Scheduling
Component types
Different costs
(processor/memory/ASIC) 

k

n

i
ki hx ≤∑

=1
,



- 29 -BF - ES

Constructive Methods

Random mapping
Each object randomly assigned to some block
Used to find starting partition for iterative methods

Hierarchical clustering
Assumes closeness function: determines how desirable it is to group
two objects
Start with singleton blocks
Repeat until termination criterion (e.g., desired number of blocks
reached)

• Compute closeness of blocks (average closeness of object pairs)
• Find pair of closest blocks
• Merge blocks

Difficulty: find proper closeness function
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Example: Hierarchical Clustering
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Ratiocut

where
P = {pi, pj}
cut(P)= sum of closeness
between elements in pi and pj
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Hw/Sw Partitioning

Special case: Bi-partitioning P={pSW, pHW}

Software-oriented approach: P={O,∅}
In software, all functions can be realized
Performance might be too low ⇒ migrate objects to HW

Hardware-oriented approach: P={∅,O}
In hardware, performance is OK 
Cost might be too high ⇒ migrate objects to SW
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Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no 
more improvement

repeat
begin
P’=P;
for i=1 to n

begin
if (cost(move(P,oi) < cost(P))
then P’:=move(P,oi);

end;
end;

until (P==P‘) 


