Embedded Systems

Multiprocessor Scheduling

REVIEW

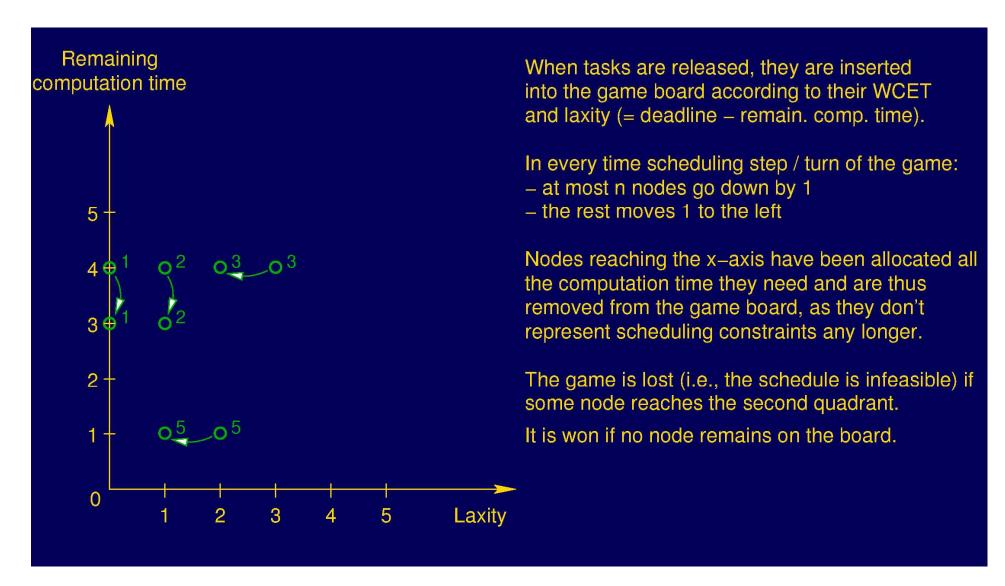
Given

- n equivalent processors,
- a finite set M of aperiodic/periodic tasks
 find a schedule such that each task always meets its deadline.

Assumptions:

- Tasks can freely be migrated between processors
 - at any integer time instant, without overhead
 - however: no task may run on two processors simultaneously
- All tasks are preemptable
 - at any integer time instant, without overhead

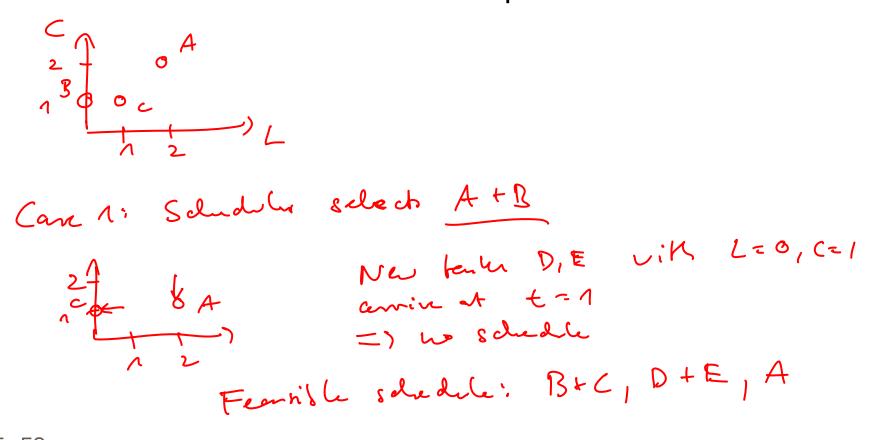
Game-board representation



Online scheduling?

REVIEW

Theorem: There can be no optimal scheduling algorithm if the release times are not known a priori.



Game-theoretic solution

Theorem: In games with

- finitely many positions on the game board, and
- complete information

there is a always a winning strategy for one of the two players;

it can be constructed effectively.

Fixpoirt constrotion:

- Stort vill the vinery pathon

- Add all parties where we

can more into set

- Add all parities where the appoint

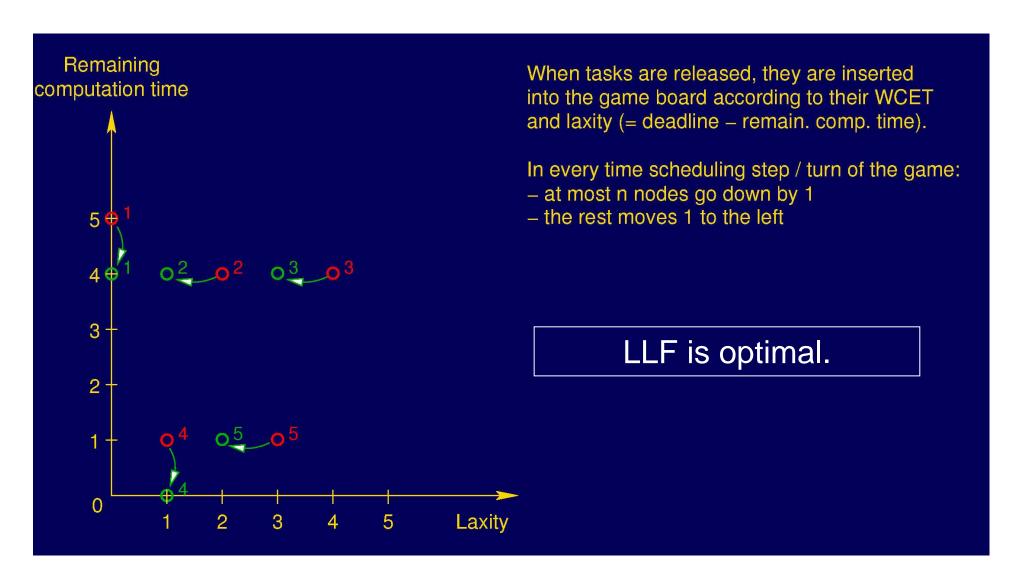
work more into set

- repeat atil ne more charp

However: high complexity ⇒ predefined strategies preferred.

LLF (Least Laxity First)

REVIEW



Periodic periodic tasks

REVIEW

Theorem: A necessary and sufficient condition for the schedulability of periodic tasks is that $U \le n$.

necesy V.

Scheduling idea

REVIEW

- 1. Divide the time line into time slices such that each period of each process is divided into an integral number of time slices.
 - Slice length $T = GCD(T_1, ..., T_n)$.
- 2. Within each time slice, allocate processor time in proportion to the utilization $U_i = \frac{C_i}{T_i}$ originating from the various tasks.

Processing time per slice $r_i = TU_i = T\frac{C_i}{T_i}$.

Hence, each task runs $\frac{T_i}{T}r_i = \frac{T_i}{T}T\frac{C_i}{T_i} = C_i$ time units within its period.

- 3. Allocate r_i according to the following algorithm
 - (a) Look for the first processor $proc_j$ that has free capacity in its time slices.
 - (b) Allocate that portion of r_i to $proc_i$ that $proc_i$ can accommodate.
 - (c) If all of r_i has been allocated then proceed with the next task (goto step a).
 - (d) Otherwise allocate the remainder of r_i to $proc_{j+1}$. $proc_{j+1}$ has enough spare capacity as it has not previously been used and $r_i \leq T$ due to $U_i \leq 1$. Furthermore, due to $r_i \leq T$, we don't generate temporal overlap between the two partial runs of task i.

Example (2 processors)

i	C_i	T_i
1	2	4
2	8	8
3	3	6

$$U = \frac{2}{4} + \frac{8}{8} + \frac{3}{6} = 2$$

$$T = 9 cd (4,8,6) = 2$$

2.
$$\frac{2}{4} = 1 \text{ unit}$$

2. $\frac{8}{8} = 2 \text{ unit}$
2. $\frac{3}{6} = 1 \text{ unit}$

Scheduling idea

This scheme works if

• the load isn't too high:

$$U = \sum_{i \in M} \frac{C_i}{T_i} \le n$$

and

• the time slices allocated have integral length:

$$r_i = TU_i = T\frac{C_i}{T_i} \in N \text{ for each } i \in M$$

Rescheduling fractional parts

• Let
$$X_i = T^*C_i/T_i - \lfloor T^*C_i/T_i \rfloor$$

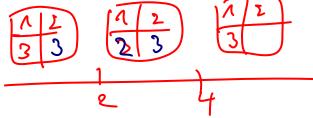
- In each period, allocate in X_i * T_i/T slices: LT*C_i/T_i +1 units and in all other slices: LT*C_i/T_i units
- This can be done without allowing any task to miss its deadline: use EDF!

Example (2 processors)

i	C_{i}	T_i
1	2	4
2	4	6
3	3	6

$$U = \frac{2}{4} + \frac{4}{6} + \frac{3}{4}$$
 (2)
 $T = gcd(4, 6, 6) = 2$

tank, han L2 * = 1 time unit



tank, and tanks how - 12 -

Theorem: A **necessary** and **sufficient** condition for scheduling periodic tasks on n processors is $U \le n$, if the task migration time is one unit.

Prof: Inductic av lengt of schedule.

Lemma: If $U \le n$, then within each time slice the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

. Soft tentes according to na-increasing cambelia blodes · It caputation blade = T -> allocate procesar excluivly -> allocate part of compatie black at end of proce: , It capulation black & T and part at beginning of processions or;

=) gage of at least 1 mit; or;

-) allocate whin captains bed

-) we win which. BF - ES - 14 -

Lemma: If $U \le n$, then **between time slices** the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

. For each tim shice, soft tanks according to hen increasing capitation blocks.

It capitative block = T -> find process that execute take at end of the previous seven => no vignetia No sud proces => arign to sam left-one process in the end (wignested them accorted for in previous . It cambeble Slade LT -) find procuse i that executed take at end of previous shier -) anipe on well as panish to correct process

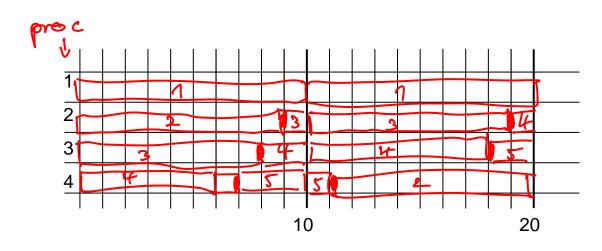
if insufficient or me proces of the beginning. Cue unigration at beginning; within she of 1 wit wipetra time).

ho such process =) anim leter (migrette time accounted for in pravious glice).

Example (4 processors)

i	Computation block	
1	10	
2	9	
3	9	
4	9	
5	3	

T=10



Theorem: Let $T=\gcd(T_1, ..., T_m)$ and let R bet the task migration time. A **sufficient condition** for scheduling the m periodic tasks is that $U \le n \cdot (T-R+1)/T$.

Schedule en Erfor, but une only inited

T-R+1 with of slice

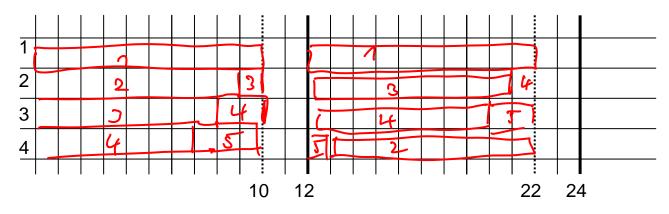
. When wipetre him too that

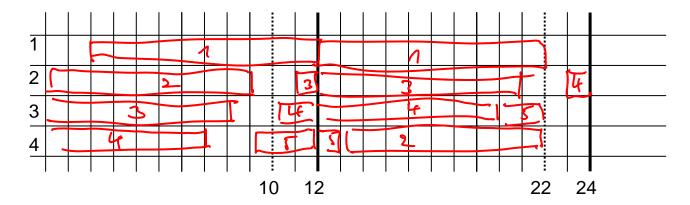
-7 slift talled to right end of slice.

Example (4 processors)

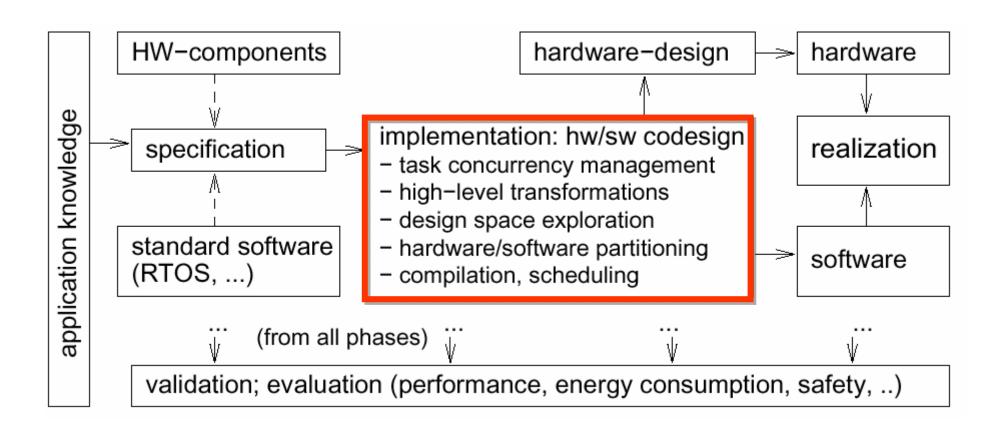
i	Computation block	
1	10	
2	9	
3	9	
4	9	
5	3	

T=12, R=3



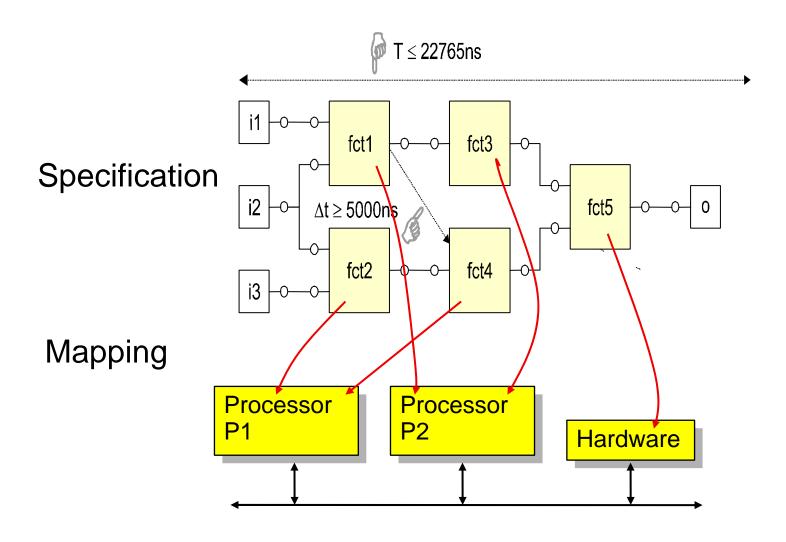


Overview



BF - ES - 20 -

Hardware/software codesign



The Partitioning Problem

Definition: The **partitioning problem** is to assign n **objects** $O=\{o_1, ..., o_n\}$ to m **blocks** (also called **partitions**) $P=\{p_1, ..., p_m\}$ such that

- $p_1 \cup p_2 \dots \cup p_m = O$
- $p_i \cap p_j = \emptyset$ for all $i \neq j$, and
- cost c(P) is minimized.

Cost function (Estimated) quality of design, may include

- System price
- Latency
- Power consumption, ...

Partitioning Methods

- Exact methods
 - Enumeration
 - Integer Linear Programming (ILP)
- Heuristic methods
 - Constructive methods
 - Random mapping
 - Hierarchical clustering
 - Iterative methods
 - Kernighan-Lin Algorithm
 - Simulated Annealing
 - ...

Integer programming models

- Ingredients:
- Cost function
- Constraints

Involving linear expressions over *integer* variables from a set *X*

$$C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in R, x_i \in \mathbb{N}$$
 (1)

Constraints:
$$\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \ge c_j \text{ with } b_{i,j}, c_j \in \mathbb{R}$$
 (2)

Def.: The problem of minimizing (1) subject to the constraints (2) is called an **integer programming (IP) problem**.

If all x_i are constrained to be either 0 or 1, the IP problem said to be a **0/1 integer programming problem**.

Example

$$C = 5x_1 + 6x_2 + 4x_3$$

 $x_1 + x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \in \{0,1\}$

	۲ı	72	X3	<u> </u>	
-		1		10	achuel
	Λ	O	1	9	Ophuel
	1	1	0	11	
	Λ	1	1	15	

Remarks on integer programming

- Integer programming is NP-complete.
- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)
- The case of $x_i \in \mathbb{R}$ is called *linear programming* (LP). LP has polynomial complexity, but most algorithms are exponential, still in practice faster than for ILP problems.
- The case of some $x_i \in \mathbb{R}$ and some $x_i \in \mathbb{N}$ is called *mixed integer-linear programming*.
- ILP/LP models can be a good starting point for modeling, even if in the end heuristics have to be used to solve them.

Integer Linear Programming for Partitioning

- Binary variables x_{i,k}
 - $x_{i,k}$ =1: object o_i in block p_k
 - $x_{i,k}$ =0: object o_i not in block p_k
- Cost c_{i,k} if object o_i in block p_k
- Integer linear program:

$$x_{i,k} \in \{0,1\}$$
 $1 \le i \le n, 1 \le k \le m$
 $\sum_{k=1}^{m} x_{i,k} = 1$ $1 \le i \le n$

minimize
$$\sum_{k=1}^{m} \sum_{i=1}^{n} x_{i,k} \cdot c_{i,k}$$

Extensions

Constraints:

Example: maximum number of

objects in block: h_k

$$\sum_{i=1}^{n} x_{i,k} \le h_k$$

- Scheduling
- Component types
- Different costs (processor/memory/ASIC)

Constructive Methods

Random mapping

- Each object randomly assigned to some block
- Used to find starting partition for iterative methods

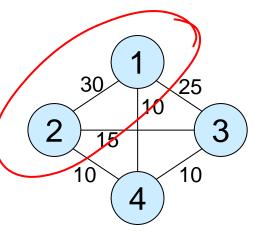
Hierarchical clustering

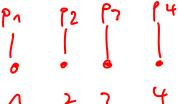
- Assumes closeness function: determines how desirable it is to group two objects
- Start with singleton blocks
- Repeat until termination criterion (e.g., desired number of blocks reached)
 - Compute closeness of blocks (average closeness of object pairs)
 - Find pair of closest blocks
 - Merge blocks
- Difficulty: find proper closeness function

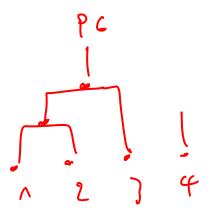
Example: Hierarchical Clustering

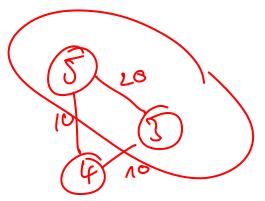
Average closeness;

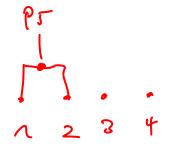
Termination: 2 blocks











Ratiocut

$$ratio = \frac{cut(P)}{size(p_i) \cdot size(p_j)}$$

where

- $P = \{p_i, p_j\}$
- cut(P)= sum of closenessbetween elements in p_i and p_j

Hw/Sw Partitioning

- Special case: Bi-partitioning P={p_{SW}, p_{HW}}
- Software-oriented approach: P={O,∅}
 - In software, all functions can be realized
 - Performance might be too low ⇒ migrate objects to HW
- Hardware-oriented approach: P={∅,O}
 - In hardware, performance is OK
 - Cost might be too high ⇒ migrate objects to SW

Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no more improvement

```
repeat
  begin
  P'=P;
  for i=1 to n
       begin
       if (cost(move(P,o<sub>i</sub>) < cost(P))
       then P':=move(P,o<sub>i</sub>);
    end;
end;
until (P==P')
```