Embedded Systems

BF - ES

1001 1
100

20

Multiprocessor Scheduling REVIEW

Given

= n equivalent processors,

= a finite set M of aperiodic/periodic tasks
find a schedule such that each task always meets its deadline.

Assumptions:

» Tasks can freely be migrated between processors
= at any integer time instant, without overhead
*= however: no task may run on two processors simultaneously

= All tasks are preemptable
= at any integer time instant, without overhead

BF - ES S

Game-board representation REVIEW

Remaining
computation time

When tasks are released, they are inserted
into the game board according to their WCET
and laxity (= deadline — remain. comp. time).

In every time scheduling step / turn of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

Nodes reaching the x—axis have been allocated all
the computation time they need and are thus
removed from the game board, as they don't
represent scheduling constraints any longer.

The game is lost (i.e., the schedule is infeasible) if
some node reaches the second quadrant.

It is won if no node remains on the board.

Online scheduling? REVIEW

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.
< A 4
2 o
1 3$ Cc

! \
N P

Cone A Shdol gelech AR

c {SA— Conmive oA < =1
! 5 —y L sl

Ao
Coontl shedlon Bre DHEGA

BF - ES 4

U\.K Lf. O{C'z_[

Game-theoretic solution REVIEW

Theorem: In games with

* finitely many positions on the game board, and
= complete information

there is a always a winning strategy for one of the two players;
It can be constructed effectively.

q:\“(ﬁro{% QO'\—-A"V"QHO"“ ’ ‘ \Roon
_ Skt Uil S pikely
— AL oM (am‘\‘%s e W
COoer vt WA A
O T N i
vt st YA sk

However: high complexity = predefined str

BF - ES

LLF (Least Laxity First)

Remaining
computation time

REVIEW

When tasks are released, they are inserted
into the game board according to their WCET
and laxity (= deadline — remain. comp. time).

In every time scheduling step / turn of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

LLF is optimal.

Periodic pes&egic tasks REVIEW

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.

'[/d,u_—wv‘—l \/.

BF - ES - 7-

Scheduling idea REVIEW

i

Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.

Slice length T = GCD(Ty, ..., Th).

. Within each time slice, allocate processor time in proportion to the
utilization U; = & originating from the various tasks.

Processing time per slice r; = TU; = T%—
Hence, each task runs tir; = T?T(T:— — C; time units within its period.

. Allocate r; according to the following algorithm

Look for the first processor proc; that has free capacity in its time slices.
Allocate that portion of r; to proc; that proc; can accommodate.

If all of ; has been allocated then proceed with the next task (goto step
a).

Otherwise allocate the remainder of r; to proc; 1.

proc; 1 has enough spare capacity as it has not previously been used

and r; < Tdueto U; < 1. Furthermore, dueto r; < T, we don’t
generate temporal overlap between the two partial runs of task i.

Example (2 processors)
. 2 & 3
' Ci T M = e % ‘f"Z ~- L
1 2 4
2 8 8 T=o9ed (%& () =)
3 3 6
(K MJL K(”:Ck/ o
___C/\({/’ (-\M Z ‘ ’L; = /l UA/\«\']—
‘\—M(&L (e e ?, ' -?— = 2 ian b
R 't
F\.a“(*& L s 9 - A b—
n— A= A e
b2 EE BR A

BF - ES

Scheduling idea

This scheme works if
* the load isn’t too high:

1

Z:E_
T
eM
zlgle
* the time slices allocated have integral length:

riTuiT%eNforeachieM

Rescheduling fractional parts

» LetX. = T*C/T, - LT*C/T,]

* |n each period,
allocate in X; * T/T slices: | T*C/T J+1 units
and in all other slices: | T*C/T.] units

= This can be done without allowing any task to miss its
deadline: use EDF!

BF - ES

- 11 -

Example (2 processors)

| c | T Ma%+i)
1 2 4 ¢ b
2 4 6 T—:.?U{L%(C,é) 2
3 3 %

(v ead g@u,/

(—unk(4 Lo [- L *

{-aﬂ.(/g,__ e LZX
&@u.bt3 LxPH (\ 2, >

J A Bue et

J A Buc WiF

J o= q he—wet

Lot

4(2. A Fak, e—d by

Egi%;) L;;:;:) E%%EE}- xﬂﬁu;hamadk PGMW) v
] lf =) Yole Leecn A vasr b
o

ATy S SLNC”\/

Loty eka N o b

2

T
I
[
2
b

BF - ES - 12 -

Extension: Task migration time

Theorem: A necessary and sufficient condition for
scheduling periodic tasks on n processors Is
U <n,
If the task migration time is one unit.

(fsro/],'» (L doehe ovv L,,,g/}’\ 4 ek Ao (L,

BF - ES

- 13-

Extension: Task migration time

Lemma: If U < n, then within each time slice the tasks
can meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

Qo_(w\-ejn‘%- L((M,“‘\

. & C%PVW\ LOQ}‘A“ « T o oA 5 R |
o/\(,(.PO’C—Z \ \ ‘,roc_a”
aly =K —y
et A L R P

—)
\

BF - ES —N e M,\)Y\/V\}h . - 14 -

Extension: Task migration time

Lemma: If U < n, then between time slices the tasks can
meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

e Tor tdl N~ V('\)C/(,, g o/ AM"""-—-LCO\ ocec s } =
b u\c/vu-«v(] C’—T?ﬁ—t\/% k—\‘\«‘k t0 e ek

-k Q;.:Lijyo.ﬁn- YO ((

S
Sf—ar —;) M(Y_ \ .
' P\ie \f N C W)Yra)t\‘cﬁ DUl Oetem kA YV’ \— (Km\f*\ls

e) . -
Q\)Q (ke Kade 2T ™ LA &"‘“—L—j‘ow
Vtg_&:ﬁ bt ok A g et 3

Nl e X e ({1“"'\ £‘6 OJW'J(

r{v c_ot—v-‘-\f

BF - ES - 15-

|t e e ‘fj“‘ ety
Covr wipreie oA %«Viuq}/‘ AL e 91
" mvarukk\ #Quﬂ,_

e tudl precess =) Oy Kk"u‘ \

C s prots B o ccanhd Pt it
)

BF - ES - 16-

Example (4 processors)
i Computation block
- -0 T=10
2 9 B
3 9
4 9
5 3
i
M i 0 I
2 3 3 |
e 3 S O =
4 1 S IswT 1 | 4
I
10 20

BF - ES - 17 -

Extension: Task migration time

Theorem: Let T=gcd(T,, ..., T,,) and let R bet the task
migration time. A sufficient condition for scheduling
the m periodic tasks is that U < n - (T-R+1)/T.

T-+1 wh 4 e
Dlrd nprebs R k= ¢l

U tekh) e ech o SR

BF - ES - 18-

Example (4 processors)

[Computation block
1 10 T:12,
: : R=3
3 9
4 9
5 3
! i
2 pl 3' [) [f'
3 D Lt ? (Lt B il
o [T L G s
10 12 22 24
! 1 I)
2|l =aEREEE AR &
3| LN N fe K
4 le Coa U o
BF - ES o 5
10 12 22 24

- 19 -

Overview

HW-components hardware—design hardware
: \L
o ¥ _ . :
B =] specification iImplementation: hw/sw codesign realization
E - task concurrency management
0 fT‘ - high-level transformations)
C | - design space exploration
= standard software — hardware/software partitioning
o
= (RTOS, ..) — compilation, scheduling Software
O
E . (from all phases) |’
® v g v v v
validation; evaluation (performance, energy consumption, safety, ..)
BF - ES - 20 -

Hardware/software codesign

Specification

Mapping

T<22765ns

fct3

L

fets 0—0+

Processor

P1

\4
Processor

P2

BF - ES

|

I

Hardware

I

The Partitioning Problem

Definition: The partitioning problem is to assign
n objects O={o,, ..., 0.} tO
m blocks (also called partitions) P={p, ..., P}
such that

" pYUPy...UPR=0
" pnp=9forall iz, and
= cost ¢(P) is minimized.

Cost function (Estimated) quality of design, may include
= System price
= Latency
= Power consumption, ...

BF - ES

- 22

Partitioning Methods

= Exact methods
* Enumeration
* |nteger Linear Programming (ILP)

= Heuristic methods
= Constructive methods
« Random mapping
» Hierarchical clustering
» |terative methods
« Kernighan-Lin Algorithm
e Simulated Annealing

BF - ES

- 23-

Integer programming models

* Ingredients:

= (Cost function Involving linear expressions over
= Constraints Integer variables from a set X

Cost function C= > ax witha, eR,x, e Iy (1)

X.,'EX

Constraints:Vj e J: » b, ; x; = ¢; with b

X],"EX

c, el (2)

1,J?

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer programming problem.

BF - ES - 24 -

Example

C =5X; +6X, +4X,

X{+ X, + X3 22
X, X5, X5 € {01}

BF - ES

¥a B Xa C’/
o ~ Ao
A 06 A 3

A oA o A
n A /\&/

QW\M

- 25.-

Remarks on integer programming

* |Integer programming is NP-complete.

* Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

= The case of x;, € R Is called linear programming (LP).
LP has polynomial complexity, but most algorithms are exponential,
still in practice faster than for ILP problems.

= The case of some x, ¢ R and some x; € N is called mixed integer-
linear programming.

* |[LP/LP models can be a good starting point for modeling, even if in the
end heuristics have to be used to solve them.

BF - ES - 26-

Integer Linear Programming for Partitioning

= Binary variables x;

= X;,=1: object o; in block p,

= X;,=0: object o; not in block p,
= Costc;, if object o; In block p,

» Integer linear program:
X €101} 1<i<nl<k<m

D X, =1 1<i<n
k=1

>

m
minimize Z X *Ci
k=1 i=1

BF - ES

- 27 -

Extensions

= Constraints:
Example: maximum number of

objects in block: h,
n

2% Sh,

i=1
= Scheduling

= Component types

= Different costs
(processor/memory/ASIC)

BF - ES

- 28 -

Constructive Methods

= Random mapping

» Each object randomly assigned to some block

» Used to find starting partition for iterative methods
= Hierarchical clustering

= Assumes closeness function: determines how desirable it is to group
two objects

= Start with singleton blocks

» Repeat until termination criterion (e.g., desired number of blocks
reached)

» Compute closeness of blocks (average closeness of object pairs)
» Find pair of closest blocks
* Merge blocks

= Difficulty: find proper closeness function

BF - ES - 29-

Example

Average
closeness:

Termination:
2 blocks

BF - ES

. Hierarchical Clustering

P
P4r2‘7r""
A M
Aor 1 Y A o
tC
‘ q0

L0

NO

- 30 -

Ratiocut

ratio = cut(P)

size(p;)-size(p;)

where

= P={p,p}
= cut(P)=sum of closeness
between elements in p; and p;

BF - ES

- 31 -

Hw/Sw Partitioning

= Special case: Bi-partitioning P={ps\; Puw}

= Software-oriented approach: P={O,J}
» |n software, all functions can be realized
» Performance might be too low = migrate objects to HW

» Hardware-oriented approach: P={J,0}
» |n hardware, performance is OK
= Cost might be too high = migrate objects to SW

BF - ES

- 32-

Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat
begin
P'=P;
fori=1ton
begin
If (cost(move(P,0,) < cost(P))
then P’:=move(P,0);
end;
end;
until (P==P")

BF - ES

- 33-

