Embedded Systems 20

BF -ES S 1-
Multiprocessor Scheduling REVIEW
Given

* n equivalent processors,
= a finite set M of aperiodic/periodic tasks
find a schedule such that each task always meets its deadline.

Assumptions:

» Tasks can freely be migrated between processors
= at any integer time instant, without overhead
= however: no task may run on two processors simultaneously

= All tasks are preemptable
= at any integer time instant, without overhead

BF - ES S

Game-board representation REVIEW

Remaining

: When
computation time

into th

step / turn of the game:
— at most n nodes vn by 1
— the rest moves 1 to the left

Nodes reaching the x s have been allocated all
are thus
d, ney don't
pnstraints any longer.

.. the edule is infeasible) if
some node reaches the second quadran

It is won if no node rems

Laxity

BF - ES

Online scheduling? REVIEW

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.

8\ A

BF - ES

Game-theoretic solution REVIEW

Theorem: In games with
= finitely many positions on the game board, and
= complete information

there is a always a winning strategy for one of the two players;
it can be constructed effectively.
CgpoiA conbveATo— t .
q:\‘ﬁr ot it (Jib»'-*\j r,\,\km
Cow v MU 4
O P L A e (s
vt ¥ et Sk bk
[O P

= veqn : Y.
However: high complexity = predefined str

BF - ES -5-

LLF (Least Laxity First) REVIEW

Remaining

computation time o0, Hioy o Inseied

rding to their WCET
— remain. comp. time).
p / turn of the game:

— the rest moves 1 to the left

LLF is optimal.

BF -ES - 6-

Periodic pesesgic tasks REVIEW
Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.
‘[/\.L,LA—»w\'l \] !
BF - ES ST
Scheduling idea REVIEW

1. Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.

Slice length T e

2. Within each time slice, allocate processor time in proportion to the
utilization U; = L[— originating from the various tasks.

Processing time per slice r; = TLl; ;
Hence, each task runs Sty = TS = C; time units within its period.

I
. Allocate r; according to the following algorithm

(a) Look for the first processor proc; that has free capacity in its time slices.
Allocate that portion of r; to proc; that proc; can accommodate.
If all of r; has been allocated then proceed with the next task (goto step
a).
Otherwise allocate the remainder of r; to proc; ;1.
proc; 1 has enough spare capacity as it has not previously been used
and r; < T due to U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.

BF - ES - 8-

Example (2 processors)
. 2 & 3
| Ci Ti (/{2- L.(g 'l"Z C&
1 2 4
2 8 8 T=ged (%€, () =)
3 3 6
(‘\ w& K</‘:L‘L} o
fanle , L oan 2 © - 1t
-\-M(LL (e 2, ? = 2L um'h
n _ -
s\-w»(,{\.s lees 9 - = A Lt
A
-
L ¢
BF - ES 9

Scheduling idea

This scheme works if
* the load isn’t too high:

Ci
U;Z:?En
ieM !

and

¢ the time slices allocated have integral length:

— e — T% e Nforeachie M

1

BF - ES - 10-

Rescheduling fractional parts

= Let X, = T*C/T, - LT*C/T]

» In each period,
allocate in X; * T/T slices: L T*C/T }+1 units
and in all other slices: L T*C/T.] units

» This can be done without allowing any task to miss its
deadline: use EDF!

BF - ES 11 -

Example (2 processors)

i C, T Mc%;,iJ,i < 2
1 2 4 ¢
2 4 6 T = ?LM%,C,Q:L
3 3 ﬁ‘ﬁ

(W ead stow

L, (—u»./ L 2 ¥ :&CY J = /1 Bue At
lf

¢ ‘ :
et L Lo o= N et
Az {4:‘1) @ Fak, and b=ty Lo
2 (3 203 ;\"""""R“"“)" (Jc"’h W
] 3 =) Yote, eesdn A pem
= G

Coem -
LoAen %uif-::\’,l oo ot

BF - ES Sy S12.

Extension: Task migration time

Theorem: A necessary and sufficient condition for
scheduling periodic tasks on n processors is
U<n,
if the task migration time is one unit.

Q4 s [Ldoehe onv ﬂ.c-\.g/}’\ /{ sehm Aol

BF - ES - 13-

Extension: Task migration time

Lemma: If U < n, then within each time slice the tasks
can meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

Sot et c._uw—k-hD o e t\W—JVZ
riqu\.‘w Lo/(b“y““\
. 5N =T
(L ca—pukole Nae .
L—'_'7 qfo-‘koct)\'"' [(rraw—\of Cxc&‘)h\hl‘—)
D s S “ 1
-9 g.JU\o-cu{"- P"’N ‘4 c)—v—l

ATk by 4 (T
O l{‘ /\- A lc— /(L--u‘l"} [< 2 P

T i eopodns ek
BN W\)Y\/M}K\“\

e WG ok A

BF - ES =) - 14 -

Extension: Task migration time

Lemma: If U < n, then between time slices the tasks can
meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

- T:C\F ’La—bL (HUV*- !’C\-‘U,’ S"'A— l—""‘-c‘/\ Ot_cc.w"k-a\} 1">
L~ Yu oveen? &"—s—-r%)\‘nlh’ﬂ«. u‘*"’

- ‘2] ~ A — sw A Vo ce v r(z\k/"

b e ot Y-k l &_\ r

[T ok et of B oy e

=" wn- \r"-‘

- e oy
Ne s s =) 0T o go— (g (:vu
. = e L V"‘“YV‘C-)\'\?A'—« N Oggcu-l"l—'\ P-’ [({V‘U\N\/S
q\,t.c.._.)

th “—“"("’M" Kadi < T Lo (‘“‘-"*"‘JM

OSSN ok A 4 r,«w(Ns ghiec y

) e,,v\"'v\,-‘_\rn-—\ —v X e ({)W‘y\ (__5 YV~
A

BF - ES .

t& (\'_&‘_\W(/e._/tﬁ —N e r‘f‘ﬂ'<’l———~v-’ fj Q\('\ V’)L@\A/\:"\J
C v Wiyt ok tﬂay‘\\.\u}/\ L ea 91
b v\»'Y,—wk‘c\ H\Am_

Lo gu\cﬂ,\ (ypoc.f_._u =) Gy ﬂ_v‘-w

CW‘YT"‘}”’“ Ruwr sccanhd (/N (W Qow.\r\‘m
o) -

BF - ES .

Example (4 processors)

i Computation block
. 19 T=10
2 9 a
3 9
4 9
5 3
e

. i

1= Vs 3

3 =] =

41 ¥ S s[4]

ST
10 20
BF - ES - 17 -

Extension: Task migration time

Theorem: Let T=gcd(T,, ..., T,;,) and let R bet the task
migration time. A sufficient condition for scheduling
the m periodic tasks is that U < n - (T-R+1)/T.

Schudnle o fodery ok vty ikl
T-+1 wh 4 yien

o Dl b Rwes toe Ak L
A k) ke ek ep SR

BF - ES - 18-

Example (4 processors)

application knowledge

i Computation block
1 10 T:12,
: ° R=3
3 9
4 9
5 3
1
2 pl 3 l q 72
3 o) L“ﬁ’ (Lt HER
4 L |5 3L
10 12 22 24
1 T [4 7
2|7 1 G =
3 E e e Lk
4 % Ceaqu e ¥
BF-E
S 10 12 22 24 - 19-
Overview

‘ HW-components ‘ hardware—-design }e‘ hardware ‘
T
: — _ !
4},‘ specification }% implementation: hw/sw codesign realization
- task concurrency management
| - high-level transformations /T\
L — design space exploration
standard software - hardware/software partitioning
(RTOS, ...) - compilation, scheduling S
1 (from all phases) "
j (fromallphases) [J
‘ validation; evaluation (performance, energy consumption, safety, ..)
BF - ES - 20-

10

Hardware/software codesign

T <22765ns

A

fct3
Specification \1
fetd 43—0—@
\
fetd
Mapping
Procéssor " P'rocessor'
BF - ES

- 21-

The Partitioning Problem

Definition: The partitioning problem is to assign
n objects O={o,, ..., 0.} t0
m blocks (also called partitions) P={p,, ..., P}
such that

" pYUP,...UP=0

* pnpj=<forall iz, and

= cost ¢(P) is minimized.

Cost function (Estimated) quality of design, may include
= System price
= Latency
= Power consumption, ...

BF - ES

- 22.

Partitioning Methods

= Exact methods
= Enumeration
= Integer Linear Programming (ILP)

» Heuristic methods
= Constructive methods
+ Random mapping
« Hierarchical clustering
» [terative methods
< Kernighan-Lin Algorithm
» Simulated Annealing

BF - ES - 23-

Integer programming models

* Ingredients:

= Cost function Involving linear expressions over
= Constraints integer variables from a set X

Cost function C= > ax;witha eRx; e/ (1)

XI'EX

Constraints:Vj € J : ij_j x,zc,withb, ;,c, e B (2)

Ljr=d
XEEX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all x; are constrained to be either 0 or 1, the IP problem said
to be a 0/1 integer programming problem.

BF - ES - 24-

12

Example

C =5X, +6X, +4X,

X;+ X, + X322
X1, X5, X5 € {0,

X T o C
A O
o ~ 1 . {
A O A SRS oft
A o A
A oA A ns
BF - ES - 25.

Remarks on integer programming

= Integer programming is NP-complete.

= Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

= The case of x; € R is called linear programming (LP).
LP has polynomial complexity, but most algorithms are exponential,
still in practice faster than for ILP problems.

= The case of some x; € R and some x; € N is called mixed integer-
linear programming.

= |LP/LP models can be a good starting point for modeling, even if in the
end heuristics have to be used to solve them.

BF - ES - 26-

13

Integer Linear Programming for Partitioning

* Binary variables x;

= X;,=1: object o, in block p,

* X;=0: object o; not in block p,
= Costc;, if object o; in block p,

= Integer linear program:
X, {0} 1<i<nl<k<m

> X, =1 1<i<n
k=1

minimize izn“ Xii - Cix

k=1 i=1

BF - ES

- 27 -

Extensions

= Constraints:
Example: maximum number of
objects in block: h,

n
i=1

= Scheduling
= Component types

= Different costs
(processor/memory/ASIC)

BF - ES

- 28-

14

Constructive Methods

= Random mapping

= Each object randomly assigned to some block

= Used to find starting partition for iterative methods
= Hierarchical clustering

= Assumes closeness function: determines how desirable it is to group
. —_—mm
two objects

= Start with singleton blocks

= Repeat until termination criterion (e.g., desired number of blocks
reached)

» Compute closeness of blocks (average closeness of object pairs)
« Find pair of closest blocks
* Merge blocks

= Difficulty: find proper closeness function

BF - ES - 29.-
Example: Hierarchical Clustering
Average Lo
closeness; (
Termination; A
2 blocks
P
n 2 2 ¥
PcC
H?(W >
BF - ES -/\ A S - 30-

15

Ratiocut

cut(P)
size(p;)-size(p;)

ratio =

where

= P={p,p}
= cut(P)=sum of closeness
between elements in p; and p,

BF - ES S 31-

Hw/Sw Partitioning

= Special case: Bi-partitioning P={ps, Prw}

= Software-oriented approach: P={O,J}
= In software, all functions can be realized
= Performance might be too low = migrate objects to HW

= Hardware-oriented approach: P={J,0}
= In hardware, performance is OK
= Cost might be too high = migrate objects to SW

BF - ES - 32-

16

Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat
begin
P'=P;
fori=lton
begin
if (cost(move(P,0,) < cost(P))
then P:=move(P,0);
end;
end;
until (P==P")

BF - ES

- 33-

17

