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Multiprocessor Scheduling REVIEW
Given

* n equivalent processors,
= a finite set M of aperiodic/periodic tasks
find a schedule such that each task always meets its deadline.

Assumptions:

» Tasks can freely be migrated between processors
= at any integer time instant, without overhead
= however: no task may run on two processors simultaneously

= All tasks are preemptable
= at any integer time instant, without overhead
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Game-board representation REVIEW
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Online scheduling? REVIEW

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.
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Game-theoretic solution REVIEW

Theorem: In games with
= finitely many positions on the game board, and
= complete information

there is a always a winning strategy for one of the two players;
it can be constructed effectively.
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LLF (Least Laxity First) REVIEW
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Periodic pesesgic tasks REVIEW
Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.
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Scheduling idea REVIEW

1. Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.

Slice length T e

2. Within each time slice, allocate processor time in proportion to the
utilization U; = L[— originating from the various tasks.

Processing time per slice r; = TLl; ;
Hence, each task runs Sty = TS = C; time units within its period.

I
. Allocate r; according to the following algorithm

(a) Look for the first processor proc; that has free capacity in its time slices.
Allocate that portion of r; to proc; that proc; can accommodate.
If all of r; has been allocated then proceed with the next task (goto step
a).
Otherwise allocate the remainder of r; to proc; ;1.
proc; 1 has enough spare capacity as it has not previously been used
and r; < T due to U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.
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Example (2 processors)
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Scheduling idea

This scheme works if
* the load isn’t too high:
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Rescheduling fractional parts

= Let X, = T*C/T, - LT*C/T]

» In each period,
allocate in X; * T/T slices: L T*C/T }+1 units
and in all other slices: L T*C/T.] units

» This can be done without allowing any task to miss its
deadline: use EDF!
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Example (2 processors)
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Extension: Task migration time

Theorem: A necessary and sufficient condition for
scheduling periodic tasks on n processors is
U<n,
if the task migration time is one unit.
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Extension: Task migration time

Lemma: If U < n, then within each time slice the tasks
can meet the migration time requirement without missing
deadlines, if the task migration time is one unit.
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Extension: Task migration time

Lemma: If U < n, then between time slices the tasks can
meet the migration time requirement without missing
deadlines, if the task migration time is one unit.
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Example (4 processors)
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Extension: Task migration time

Theorem: Let T=gcd(T,, ..., T,;,) and let R bet the task
migration time. A sufficient condition for scheduling
the m periodic tasks is that U < n - (T-R+1)/T.
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Example (4 processors)
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Overview

‘ HW-components ‘ hardware—-design }e‘ hardware ‘
T
: — _ !
4},‘ specification }% implementation: hw/sw codesign realization
- task concurrency management
| - high-level transformations /T\
L — design space exploration
standard software - hardware/software partitioning
(RTOS, ...) - compilation, scheduling S
1 (from all phases) "
j (fromallphases) [ J
‘ validation; evaluation (performance, energy consumption, safety, ..)
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Hardware/software codesign
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The Partitioning Problem

Definition: The partitioning problem is to assign
n objects O={o,, ..., 0.} t0
m blocks (also called partitions) P={p,, ..., P}
such that

" pYUP,...UP=0

* pnpj=<forall iz, and

= cost ¢(P) is minimized.

Cost function (Estimated) quality of design, may include
= System price
= Latency
= Power consumption, ...
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Partitioning Methods

= Exact methods
= Enumeration
= Integer Linear Programming (ILP)

» Heuristic methods
= Constructive methods
+ Random mapping
« Hierarchical clustering
» [terative methods
< Kernighan-Lin Algorithm
» Simulated Annealing
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Integer programming models

* Ingredients:

= Cost function Involving linear expressions over
= Constraints integer variables from a set X

Cost function C= > ax;witha eRx; e/ (1)

XI'EX

Constraints:Vj € J : ij_j x,zc,withb, ;,c, e B (2)

Ljr=d
XEEX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all x; are constrained to be either 0 or 1, the IP problem said
to be a 0/1 integer programming problem.
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Example
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Remarks on integer programming

= Integer programming is NP-complete.

= Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

= The case of x; € R is called linear programming (LP).
LP has polynomial complexity, but most algorithms are exponential,
still in practice faster than for ILP problems.

= The case of some x; € R and some x; € N is called mixed integer-
linear programming.

= |LP/LP models can be a good starting point for modeling, even if in the
end heuristics have to be used to solve them.
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Integer Linear Programming for Partitioning

* Binary variables x;

= X;,=1: object o, in block p,

* X;=0: object o; not in block p,
= Costc;, if object o; in block p,

= Integer linear program:
X, {0} 1<i<nl<k<m

> X, =1 1<i<n
k=1

minimize izn“ Xii - Cix

k=1 i=1
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Extensions

= Constraints:
Example: maximum number of
objects in block: h,

n
i=1

= Scheduling
= Component types

= Different costs
(processor/memory/ASIC)
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Constructive Methods

= Random mapping

= Each object randomly assigned to some block

= Used to find starting partition for iterative methods
= Hierarchical clustering

= Assumes closeness function: determines how desirable it is to group
. —_—mm
two objects

= Start with singleton blocks

= Repeat until termination criterion (e.g., desired number of blocks
reached)

» Compute closeness of blocks (average closeness of object pairs)
« Find pair of closest blocks
* Merge blocks

= Difficulty: find proper closeness function

BF - ES - 29.-
Example: Hierarchical Clustering
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Ratiocut

cut(P)
size(p;)-size(p;)

ratio =

where

= P={p,p}
= cut(P)=sum of closeness
between elements in p; and p,
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Hw/Sw Partitioning

= Special case: Bi-partitioning P={ps, Prw}

= Software-oriented approach: P={O,J}
= In software, all functions can be realized
= Performance might be too low = migrate objects to HW

= Hardware-oriented approach: P={J,0}
= In hardware, performance is OK
= Cost might be too high = migrate objects to SW
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Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat
begin
P'=P;
fori=lton
begin
if (cost(move(P,0,) < cost(P))
then P:=move(P,0);
end;
end;
until (P==P")
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