
- 1 -BF - ES

Embedded Systems 21

- 2 -BF - ES

The Partitioning Problem

Definition: The partitioning problem is to assign
n objects O={o1, …, on} to
m blocks (also called partitions) P={p1, …, pm}
such that
p1 ∪ p2 … ∪ pm = O
pi∩ pj = ∅ for all i≠j, and
cost c(P) is minimized.

Cost function (Estimated) quality of design, may include
System price
Latency
Power consumption, …

REVIEW

- 3 -BF - ES

Exact methods: Linear Programming

Binary variables xi,k
xi,k=1: object oi in block pk

xi,k=0: object oi not in block pk

Cost ci,k if object oi in block pk

Integer linear program:

minimize

nix

mknix
m

k
ki

ki

≤≤=

≤≤≤≤∈

∑
=

11

1,1}1,0{

1
,

,

∑∑
= =

⋅
m

k

n

i
kiki cx

1 1
,,

REVIEW

- 4 -BF - ES

Constructive methods:
Hierarchical Clustering

1

4

2 3
30 25

15
10

1010

Average
closeness;

Termination:
2 blocks

REVIEW

- 5 -BF - ES

Iterative Methods: Kernighan-Lin (K-L)
An iterative balanced partitioning (bi-sectioning) heuristic

Given: Two sets A and B, such that |A|=|B|=n and A∩B=∅
cost of edge (a,b) in cut: cab

While the cost keeps decreasing
Mark all objects as „unlocked“
While there are unlocked pairs left

Select pair of unlocked objects (a,b) which give the largest
decrease or the smallest increase in cut size
Mark a and b as „locked“
Exchange a and b
Record resulting partition and cost

Continue with the partition with least cost

- 6 -BF - ES

Example

a

d

b

c

e

h

f

g

- 7 -BF - ES

Computing the cost reduction

External cost of a∈A: Ea=∑v∈B cav

Internal cost of a∈A: Ia=∑v∈A cav

Cost reduction for moving a : Da=Ea-Ia
Cost reduction for swapping a and b: gab=Da+Db-2cab

Update to D-values when a and b are swapped:
D‘x = Dx + 2cxa – 2cxb for all x∈A-{a}
D‘y = Dy + 2cyb – 2cya for all y∈B-{b}

- 8 -BF - ES

Weighted Example

023114f
20 4222e
340343d
123012c
12 4 101b
423210a
fedcba

A={a,b,c}

B={d,e,f}

- 9 -BF - ES

Weighted Example

023114f
20 4222e
340343d
123012c
12 4 101b
423210a
fedcba

A={a,b,c}

B={d,e,f}

- 10 -BF - ES

Kernighan-Lin

Repeat
Compute Dv für all objects
Mark all vertices as unlocked
For i=1 to n/2 do

• Compute gab for all pairs a,b
• Pick unlocked ai,bi with largest gab,i
• Mark ai,bi as locked
• Store gain
• Update Dv für all objects

Find k such that Gk=∑k
i=1 gab,i is maximal

If Gk>0, then move a1,…,ak from A to B
and b1,…,bk from B to A.

Until Gk≤0

- 11 -BF - ES

Extensions to K-L

Different block sizes
If |A|<|B|, add |B|-|A| dummy objects to A.
Dummy objects are not connected
Apply K-L
Remove dummies

Objects with size > 1
Replace each object of size s with s objects of size 1
new objects are fully connected with edges of infinite weight
Apply K-L

More than 2 blocks
Apply K-L to each pair of blocks

- 12 -BF - ES

Hypergraphs

A B C D

E F

A B C D

E F

net1

net2 net3 net4 net5

- 13 -BF - ES

Fiduccia-Mattheyses Heuristic (F-M)

Objects have size s(o)
Size of block: sum of size of objects
Balanced two-way partition:
Given a fraction r, 0 < r < 1,
partition a graph into two blocks A and B such that
|A| / (|A|+|B|) ≈ r
and cutset is minimized
Linear complexity

Terminology: object=„cell“, hyperedges=„net“

- 14 -BF - ES

Single pass of the F-M heuristic

Select the cell with the
greatest gains that
satisfies balance
conditions
Move the cell and lock it
Update gains
Repeat until all cells are
locked or will dissatisfy
balance conditions

- 15 -BF - ES

Overall F-M heuristic

Create an initial partition
Execute a pass of the FM
heuristic
Start again using the result
partition as the initial partition
Continue until the resulting gain
is no longer greater than zero

- 16 -BF - ES

Calculating Gain

g(i) = FS(i) - TE(i)
FS(i): The number of nets which contain cell i but no other object in
the same partition as i
TE(i): The number of nets that consist only of i and other cells
currently in the same partition as i

D

C

B

A

gainTEFSobject

A B C D

- 17 -BF - ES

Calculate Gain

For each unlocked cell i do
g(i) = 0
F = the “from block” of object i
T = the “to block” of object i
For each net n that contains i do

• If F(n) = 1 increment g(i)
• If T(n) = 0 decrement g(i)

- 18 -BF - ES

Net distribution and critical nets

Distribution of net i:
(A(i),B(i))=(# of cells in A, # of cells in B)

A net is critical if it has an cell that if moved will add or
remove the net from the cutset
Gain of a cell depends only on its critical nets.
4 cases: A(i)=0 or 1, B(i)=0 or 1

- 19 -BF - ES

Updating gains

For the update of the gains, we only need to consider
nets that contain the cell selected for movement and that
are critical before or after the move.

- 20 -BF - ES

- 21 -BF - ES

- 22 -BF - ES

Complexity

Once a net has some locked cell at both sides, the net
will remain in the cut set.
At most 3 update operations per net during one pass of
the algorithm
Linear complexity

- 23 -BF - ES

- 24 -BF - ES

Simulated Annealing

General method for solving combinatorial optimization
problems.

Based the model of slowly cooling crystal liquids.

Changes leading to a poorer configuration (with respect
to some cost function) are accepted with a certain
probability.

This probability is controlled by a temperature parameter:
the probability is smaller for smaller temperatures.

- 25 -BF - ES

Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;
begin
temp := temp_start;
cost:=c(P);
while (Frozen()==FALSE) do
begin
while (Equilibrium()==FALSE) do
begin P’ := RandomMove(P);
cost’=c(P’)
deltacost := cost’ - cost;
if (Accept(deltacost, temp)>random[0,1))
then P=P’; cost=cost’

end;
temp:= decreaseTemp(temp)

end;
end;

- 26 -BF - ES

Simulated Annealing

Annealing schedule: DecreaseTemp(), Frozen()
• temp_start=1.0
• temp = α ⋅ temp (typical: 0.8 ≤ α ≤ 0.99)
• stop at temp < temp_min or if no more improvement

Equilibrium:
• After certain number of iterations or when no more improvement

Complexity:
• From exponential to constant, depending on choice of Equilibrium(),

DecreaseTemp(), Frozen()
• The longer the runtime, the better the results
• Usually functions constructed to obtain polynomial runtime

- 27 -BF - ES

Comparison of Partitioning Algorithms

López-Vallejo/López (2003):
On the Hardware-Software Partitioning Problem: System Modeling and Partitioning Techniques

- 28 -BF - ES

Comparison of Partitioning Algorithms

López-Vallejo/López (2003):
On the Hardware-Software Partitioning Problem: System Modeling and Partitioning Techniques

- 29 -BF - ES

Case Study: YSC (IBM)

Yorktown Silicon Compiler:
functional partitioning of hardware
Input: functional description on the level of arithmetic
and logical expressions
Target: partitioning to several chips
Abstraction level: functional units of datapaths (ALUs,
registers)
Method: hierarchical clustering

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)()()}(),(min{
),(

),(
21

ji

c

ji

c
ji

ji psizepsize
maxsize

psizepsize
maxsize

maxwires
ppssharedwire

ppcloseness

- 30 -BF - ES

Case Study: Vulcan (Stanford)

Input: program in HardwareC
C extended by a process concept and interprocess communication
Specification with constraints (min/max times and data rates)

Target: 1 processor + several hardware components
One global bus, one global memory
Processor is bus master

Abstraction level: basic blocks
Method: HW-oriented greedy
all operations with external nondeterminism in HW,
all operations with internal nondeterminism in SW,
deterministic operations: HW-oriented greedy
cost function includes hw cost, memory requirement, performance
and synchronization effort

- 31 -BF - ES

Case Study: Cosyma (Braunschweig)

Input: program in Cx

C extended by a process concept and interprocess
communication
Specification with constraints (min/max times and data rates)

Target: processor + coprocessor
Coupled by shared memory
Computations on the processor and coprocessor may not
overlap in time

Abstraction level: basic blocks
Method: SW-oriented, two loops:

Inner loop: simulated annealing with cost function that gives the time
gain für a HW realization of a block
Outer loop: synthesis to improve the estimation for the inner loop

- 32 -BF - ES

Case study: COOL (Dortmund)

Inputs to COOL:
1. Target technology

• As evaluation is based on either simulation or performance figures
provided by code generators / hw synthesizers, it suffices to
provide information on how to start the compilers / the hw
synthesis, plus their relevant parameters (target technology library,
etc.)

2. Design constraints
• Required throughput, latency, max. memory, max. area, …

3. Required behavior
• Task graphs for specifying the coordination, plus
• VHDL descriptions of algorithmic behavior of leaf nodes

Inputs to COOL:
1. Target technology

• As evaluation is based on either simulation or performance figures
provided by code generators / hw synthesizers, it suffices to
provide information on how to start the compilers / the hw
synthesis, plus their relevant parameters (target technology library,
etc.)

2. Design constraints
• Required throughput, latency, max. memory, max. area, …

3. Required behavior
• Task graphs for specifying the coordination, plus
• VHDL descriptions of algorithmic behavior of leaf nodes

- 33 -BF - ES

Steps of the COOL partitioning algorithm (1)

Translation of the behavior into an internal graph model

Translation of the behavior of each node from VHDL into C

Compilation
• All C programs compiled for the target processor,
• Computation of the resulting program size,
• estimation of the resulting execution time

(simulation input data might be required)

Synthesis of hardware components:
For each leaf node, application-specific hardware is synthesized.
High-level synthesis sufficiently fast (uses RT level rather than gate level
synthesis; performance estimates found to be sufficiently precise).

Translation of the behavior into an internal graph model

Translation of the behavior of each node from VHDL into C

Compilation
• All C programs compiled for the target processor,
• Computation of the resulting program size,
• estimation of the resulting execution time

(simulation input data might be required)

Synthesis of hardware components:
For each leaf node, application-specific hardware is synthesized.
High-level synthesis sufficiently fast (uses RT level rather than gate level
synthesis; performance estimates found to be sufficiently precise).

- 34 -BF - ES

Steps of the COOL partitioning algorithm (2)

Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Information
required for partitioning is pre-computed.

• Can’t be precise at that stage, yet sufficiently accurate
estimates possible

Generating and solving a mathematical model of the optimization
problem:
Integer programming (IP) model used to encode the optimization
problem.
Optimality of the partitioning coincides with optimality wrt. the cost
function (up to approximations in the model due to lacking preciseness
of parameter estimation, in particular wrt. communication time)

Solved with standard IP packages.

Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Information
required for partitioning is pre-computed.

• Can’t be precise at that stage, yet sufficiently accurate
estimates possible

Generating and solving a mathematical model of the optimization
problem:
Integer programming (IP) model used to encode the optimization
problem.
Optimality of the partitioning coincides with optimality wrt. the cost
function (up to approximations in the model due to lacking preciseness
of parameter estimation, in particular wrt. communication time)

Solved with standard IP packages.

- 35 -BF - ES

Steps of the COOL partitioning algorithm (3)

Iterative improvements & Interface Synthesis
Adjacent nodes mapped to the same hardware component are merged.
After partitioning, the glue logic required for interfacing processors,
application-specific hardware and memories is created.

Iterative improvements & Interface Synthesis
Adjacent nodes mapped to the same hardware component are merged.
After partitioning, the glue logic required for interfacing processors,
application-specific hardware and memories is created.

