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Industrial Needs
Hard real-time systems, often in safety-critical applications abound

– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane, 
sensing every 5 mSec

Sideairbag in car,
Reaction in <10 mSec



Hard Real-Time Systems
• Embedded controllers are expected to finish their tasks 

reliably within time bounds.
• Task scheduling must be performed
• Essential: upper bound on the execution times of all tasks 

statically known 
• Commonly called the Worst-Case Execution Time 

(WCET)
• Analogously, Best-Case Execution Time (BCET)
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The Traditional Approaches
• Measurements: determine execution times directly by 

observing the execution. 
Does not guarantee an upper bound to all executions

• Structure-based: determine  the maximum execution times 
according to the structure of the program. 

Requires compositionality – not given on modern hardware 
with caches/pipelines!

bound(if c then s1 else s2) =
bound( c ) +max{bound(s1), bound(s2)}



Modern Hardware Features
• Modern processors increase performance by using: 

Caches, Pipelines, Branch Prediction
• These features make WCET computation difficult:

Execution times of instructions vary widely
– Best case - everything goes smoothely: no cache miss, operands

ready, needed resources free, branch correctly predicted
– Worst case - everything goes wrong: all loads miss the cache, 

resources needed are occupied, operands are not ready
– Span may be several hundred cycles



Access Times
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(Concrete) Instruction Execution
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Timing Accidents and Penalties
Timing Accident – cause for an increase of the 

execution time of an instruction
Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss



Execution Time is History-Sensitive

Contribution of the execution of an instruction 
to a program‘s execution time 

• depends on the execution state, i.e., on the 
execution so far,

• i.e., cannot be determined in isolation



Overall Approach: Natural Modularization

1. Processor-Behavior Prediction: 
• Uses Abstract Interpretation
• Excludes as many Timing Accidents as possible
• Determines WCET for basic blocks (in contexts)

2. Worst-case Path Determination
• Maps control flow graph to an integer linear program
• Determines upper bound and associated path
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Murphy’s Law in Timing Analysis
• Naïve, but safe guarantee accepts Murphy’s Law: 

Any accident that may happen will happen
• Consequence: hardware overkill necessary to guarantee 

timeliness
• Example: Alfred Rosskopf, EADS Ottobrunn, measured 

performance of PPC with all the caches switched off 
(corresponds to assumption ‘all memory accesses miss 
the cache’)
Result: Slowdown of a factor of 30!!!



Fighting Murphy’s Law
• Static Program Analysis allows the derivation of 

Invariants about all execution states at a program point
• Derive Safety Properties from these invariants : 

Certain timing accidents will never happen.
Example: At program point p, instruction fetch will 
never cause a cache miss

• The more accidents excluded, the lower the upper
bound

• (and the more accidents predicted, the higher the lower
bound)



First Attempt at Processor-Behavior Prediction

1. Abstractly interpret the program to obtain invariants 
about processor states

2. Derive safety properties, “timing accident X does not 
happen at instruction I”

3. Omit timing penalties, whenever a timing accident can 
be excluded;
assume timing penalties, whenever 

• timing accident is predicted or 
• can not be safely excluded

Only the “worst” result states of an instruction need to be 
considered as input states for successor instructions!



Surprises may lurk in the Future!
• Interference between processor components 

produces Timing Anomalies:
– Assuming local good case leads to higher overall 

execution time ⇒ risk for WCET
– Assuming local bad case leads to lower overall 

execution time ⇒ risk for BCET
Ex.: Cache miss preventing branch misprediction

• Treating components in isolation may be unsafe



Non-Locality of Local Contributions
• Interference between processor components 

produces Timing Anomalies: Assuming local best 
case leads to higher overall execution time.
Ex.: Cache miss in the context of branch prediction

• Treating components in isolation maybe unsafe
• Implicit assumptions are not always correct:

– Cache miss is not always the worst case!
– The empty cache is not always the worst-case start!



Abstract Interpretation vs. Model Checking

• Model Checking is good if you know the safety 
property that you want to prove

• A strong Abstract Interpretation verifies invariants 
at program points implying many safety properties
– Individual safety properties need not be specified 

individually! ☺
– They are encoded in the static analysis



Static Program Analysis
• Determination of invariants about program execution

at compile time
• Most of the (interesting) properties are undecidable => 

approximations
• An approximate program analysis is safe, if its results 

can always be depended on. Results are allowed to be 
imprecise as long as they are on the safe side

• Quality of the results (precision) should be as good as 
possible



Approximation

yes no

True Answers
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Safety and Liveness Properties

• Safety: „something bad will not happen“
Examples: Division by 0, 
Array index not out of bounds

• Liveness: „something good will happen“
Examples: Program will react to input, 
Request will be served



Analogies
• Rules-of-Sign Analysis σ: VAR −> {+,-,0, Û,�}

Derivable safety properties from invariant σ(x) = + :
– sqrt(x) ⇒ No exception: sqrt of negative number
– a/x ⇒ No exception: Division by 0

• Must-Cache Analysis mc: ADDR −> CS x CL
Derivable safety properties:
Memory access will always hit the cache



Example for Approximation

Rules of Sign:  (Abstract) Addition +#
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Example for Approximation

Abstract Multiplication *#
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Static Program Analysis Applied 
to WCET Determination

• WCET must be safe, i.e. not underestimated
• WCET should be tight, i.e. not far away 

from real execution times
• Analogous for BCET
• Effort must be tolerable



Analysis Results (Airbus Benchmark)



Interpretation

• Airbus’ results obtained with legacy method:
measurement for blocks, tree-based composition, 
added safety margin

• ~30% overestimation
• aiT’s results were between real worst-case 

execution times and Airbus’ results



Reasons for Success

• C code synthesized from SCADE specifications
• Very disciplined code

– No pointers, no heap
– Few tables
– Structured control flow

• However, very badly designed processor!



Abstract Interpretation (AI)
• AI: semantics based method for static program analysis
• Basic idea of AI: Perform the program's computations 

using value descriptions or abstract value in place of the 
concrete values

• Basic idea in WCET: Derive timing information from an 
approximation of the “collecting semantics” (for all 
inputs)

• AI supports correctness proofs
• Tool support (PAG)



Value Analysis
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Value Analysis
• Motivation: 

– Provide exact access information to data-cache/pipeline 
analysis

– Detect infeasible paths
• Method: calculate intervals, i.e. lower and upper bounds 

for the values occurring in the machine program 
(addresses, register contents, local and global variables)

• Method: Interval analysis
• Generalization of Constant Propagation ⇒

Impossible/difficult to do by MC (c.f. Cousot against 
Manna paper)



Value Analysis II

• Intervals are computed along the
CFG edges

• At joins, intervals are „unioned“

D1: [-2,+2] D1: [-4,0]

D1: [-4,+2]



Value Analysis (Airbus Benchmark)
Task Unreached Exact Good Unknown Time [s]

1 8% 86% 4% 2% 47
2 8% 86% 4% 2% 17
3 7% 86% 4% 3% 22
4 13% 79% 5% 3% 16
5 6% 88% 4% 2% 36
6 9% 84% 5% 2% 16
7 9% 84% 5% 2% 26
8 10% 83% 4% 3% 14
9 6% 89% 3% 2% 34

10 10% 84% 4% 2% 17
11 7% 85% 5% 3% 22
12 10% 82% 5% 3% 14

1Ghz Athlon, Memory usage <= 20MB
Good means less than 16 cache lines



Caches



Caches: Fast Memory on Chip
• Caches are used, because

– Fast main memory is too expensive
– The speed gap between CPU and memory is too

large and increasing
• Caches work well in the average case:

– Programs access data locally (many hits)
– Programs reuse items (instructions, data)
– Access patterns are distributed evenly across the cache
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Caches: How the work
CPU wants to read/write at memory address a,

sends a request for a to the bus
Cases:
• Block m containing a in the cache (hit): 

request for a is served in the next cycle
• Block m not in the cache (miss):

m is transferred from main memory to the cache, 
m may replace some block in the cache,
request for a is served asap while transfer still continues

• Several replacement strategies: LRU, PLRU, FIFO,...
determine which line to replace



A-Way Set Associative Cache

Address
prefix

Byte in
line

Set
number

Address:

CPU

1 2 … A

Adr. prefix Tag Rep Data block Adr. prefix Tag Rep Data block … …

… …
… …
… …

Set: Fully associative subcache of A elements with LRU, FIFO, rand. replacement strategy
… …
… …
… …

Main MemoryCompare address prefix
If not equal, fetch block from memory

Data Out

Byte select & align



LRU Strategy
• Each cache set has its own replacement logic => Cache sets 

are independent: Everything explained in terms of one set
• LRU-Replacement Strategy:

– Replace the block that has been Least Recently Used
– Modeled by Ages

• Example: 4-way set associative cache
age 3210

m0 m1
Access m4    (miss) m4 m2

m1
Access m1    (hit) m0m4 m2

m1m5Access m5     (miss) m4 m0

m0       m1 m2 m3



Cache Analysis
How to statically precompute cache contents:

• Must Analysis:
For each program point (and calling context), find out 
which blocks are in the cache 

• May Analysis:                                                   
For each program point (and calling context), find out 
which blocks may be in the cache
Complement says what is not in the cache



Must-Cache and May-Cache-
Information

• Must Analysis determines safe information 
about cache hits
Each predicted cache hit reduces WCET

• May Analysis determines safe information 
about cache misses
Each predicted cache miss increases BCET



Example: 
Fully Associative Cache 
(2 Elements)



Cache with LRU Replacement: Transfer for must
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Cache Analysis: Join (must)
{ a }
{   }

{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{   }
{   }

{ a, c }
{ d }

“intersection
+ maximal age”

Join (must)

Interpretation: memory block a is 
definitively in the (concrete) cache
=> always hit



Cache Analysis: Join (must)
{ …. }
{ … }
{ … }
{ d }

{ d }
{ .. }
{ .. }
{ .. }

{ … }
{ … }
{ … }
{ d }

“intersection
+ maximal age”

Why maximal age?

Join (must)

{ … }
{ … }
{ … }
{ …}

[s] replacing d



Cache with LRU Replacement: Transfer for may
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Cache Analysis: Join (may)

Interpretation: memory block s not in 
the abstract cache => s will definitively 
not be in the (concrete) cache
=> always miss



Cache Analysis
Approximation of the Collecting Semantics

the semantics set of all cache states
for each program point

determines

“cache” semantics set of all cache states
for each program point

determines

abstract semantics abstract cache states
for each program point

determines

PAG

conc



Deriving a Cache Analysis  
- Reduction and Abstraction -

• Reducing the semantics (to what concerns caches)
– e.g. from values to locations,
– ignoring arithmetic.
– obtain “auxiliary/instrumented” semantics

• Abstraction
– Changing the domain: sets of memory blocks in single 

cache lines
• Design in these two steps is matter of engineering



Result of the Cache Analyses

  Category Abb.   Meaning

  always hit ah   The memory reference will

  always result in a cache hit.

  always miss am   The memory reference will

  always result in a cache miss.

  not classified nc   The memory reference could

  neither be classified as ah

  nor am.

Categorization of memory references

WCET: am
BCET:  ah



Contribution to WCET
Information about cache contents sharpens timings.

while  . . .  do [max n]  ...
ref to s
...

od

time
tmiss

thit

loop time

n ∗ tmiss

n ∗ thit

tmiss + (n − 1) ∗ thit

thit + (n − 1) ∗ tmiss



Contexts
Cache contents depends on the Context, 
i.e. calls and loops

while cond do
join (must)

First Iteration loads the cache =>
Intersection looses 

most of the information!



Distinguish basic blocks by contexts

• Transform loops into tail recursive procedures
• Treat loops and procedures in the same way
• Use interprocedural analysis techniques,VIVU

– virtual inlining of procedures
– virtual unrolling of loops

• Distinguish as many contexts as useful
– 1 unrolling for caches
– 1 unrolling for branch prediction (pipeline)



Real-Life Caches

32 - 456 - 9Miss penalty

Pseudo-LRUPseudo-
round robin

Replacement

84Associativity

3216Line size

MPC 750/755MCF 5307Processor



Real-World Caches I, the MCF 5307

• 128 sets of 4 lines each (4-way set-associative)
• Line size 16 bytes
• Pseudo Round Robin replacement strategy
• One! 2-bit replacement counter
• Hit or Allocate: Counter is neither used nor modified
• Replace: 

Replacement in the line as indicated by counter;
Counter increased by 1 (modulo 4)



Example
Assume program accesses blocks 0, 1, 2, 3, …
starting with an empty cache
and block i is placed in cache set i mod 128

Accessing blocks 0 to 127: counter = 0

Line 0
Line 1

Line 2

Line 3

0 1 2 3 4 1275 …



After accessing block 511: Counter still 0

511…389388387386385384
383…261260259258257256
255…133132131130129128
127…543210Line 0

Line 1

Line 2

Line 3

384
256
128
512

385
257
513
1

386
514
130
2

515
259
131
3

388
260
132
516

389
261
517
5

…
…
…
…

639
383
255
127Line 0

Line 1

Line 2

Line 3

After accessing block 639: Counter again 0



Lesson learned

• Memory blocks, even useless ones, may 
remain in the cache

• The worst case is not the empty cache, but a 
cache full of junk (blocks not accessed)!

• Assuming the cache to be empty at program 
start is unsafe!



Cache Analysis for the MCF 5307
• Modeling the counter: Impossible!

– Counter stays the same or is increased by 1
– Sometimes this is unknown
– After 3 unknown actions: all information lost!

• May analysis: never anything removed! => useless!
• Must analysis: replacement removes all elements 

from set and inserts accessed block => set contains 
at most one memory block



Cache Analysis for the MCF 5307

• Abstract cache contains at most one block 
per line

• Corresponds to direct mapped cache
• Only ¼ of capacity
• As for predictability, ¾ of capacity are lost!
• In addition: Uniform cache =>

instructions and data evict each other



Results of Cache Analysis

• Annotations of memory accesses (in 
contexts) with
Cache Hit: Access will always hit the cache 
Cache Miss: Access will never hit the cache 
Unknown: We can’t tell



Pipelines



Hardware Features: Pipelines

Ideal Case: 1 Instruction per Cycle

Fetch

Decode
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Hardware Features: Pipelines II

• Instruction execution is split into several stages
• Several instructions can be executed in parallel
• Some pipelines can begin more than one

instruction per cycle: VLIW, Superscalar
• Some CPUs can execute instructions out-of-order
• Practical Problems: Hazards and cache misses



Hardware Features: Pipelines III

Pipeline Hazards:
• Data Hazards: Operands not yet available 

(Data Dependences)
• Resource Hazards: Consecutive instructions 

use same resource
• Control Hazards: Conditional branch
• Instruction-Cache Hazards: Instruction fetch 

causes cache miss



Cache analysis: prediction of cache hits on instruction or 
operand fetch or store
Cache analysis: prediction of cache hits on instruction or 
operand fetch or store

Static exclusion of hazards

lwz r4, 20(r1) Hit

Dependence analysis: elimination of data hazardsDependence analysis: elimination of data hazards

Resource reservation tables: elimination of resource hazardsResource reservation tables: elimination of resource hazards

add r4, r5,r6
lwz r7, 10(r1)
add r8, r4, r4

Operand
ready

IF
EX
M
F



CPU as a (Concrete) State Machine

• Processor (pipeline, cache, memory, inputs)  
viewed as a big state machine, 
performing transitions every clock cycle

• Starting in an initial state for an instruction 
transitions are performed, 
until a final state is reached:
– End state: instruction has left the pipeline
– # transitions: execution time of instruction



A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state) t: trace
interprets instruction stream of b starting in state s producing trace t.

Successor basic block is interpreted starting in initial state last(t)

length(t) gives number of cycles



An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state) t: trace

interprets instruction stream of b (annotated with cache 
information) starting in state s producing trace t

length(t) gives number of cycles



What is different?
• Abstract states may lack information, e.g. about cache contents.
• Assume local worst cases is safe

(in the case of no timing anomalies)
• Traces may be longer (but never shorter).
• Starting state for successor basic block? 

In particular, if there are several predecessor blocks.

s2s1
s?

Alternatives:
• sets of states
• combine by least upper bound



(Concrete) Instruction Execution
mul
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Abstract Instruction-Execution
mul
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I-Cache miss?

Issue
Unit occupied?

Execute
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An Abstract Pipeline Executing a Basic Block
- processor with timing anomalies -

function analyze (b : basic block, S : analysis state) T: set of trace
Analysis states = 2PS x CS 

PS = set of abstract pipeline states
CS = set of abstract cache states

interprets instruction stream of b (annotated with cache information)
starting in state S producing set of traces T

max(length(T)) - upper bound for execution time
last(T) - set of initial states for successor block
Union for blocks with several predecessors. 

S2S1
S3 =S1 ∪S2



Integrated Analysis: Overall Picture

Basic Block

s1

s10

s2 s3

s11 s12

s1

s13

Fixed point iteration over Basic Blocks (in 
context)  {s1, s2, s3} abstract state

move.1 (A0,D0),D1

Cyclewise evolution of  processor model
for instruction

s1 s2 s3



Pipeline Modeling



How to Create a Pipeline Analysis?

• Starting point: Concrete model of execution
• First build reduced model

– E.g. forget about the store, registers etc.
• Then build abstract timing model

– Change of domain to abstract states,
i.e. sets of (reduced) concrete states 

– Conservative in execution times of instructions



Defining the Concrete State Machine

How to define such a complex state machine?
• A state consists of (the state of) internal components 

(register contents, fetch/ retirement queue contents...)
• Combine internal components into units

(modularisation, cf. VHDL/Verilog)
• Units communicate via signals
• (Big-step) Transitions via unit-state updates and signal

sends and receives



An Example: MCF5307

• MCF 5307 is a V3 Coldfire family member
• Coldfire is the successor family to the M68K 

processor generation
• Restricted in instruction size, addressing modes

and implemented M68K opcodes
• MCF 5307: small and cheap chip with integrated

peripherals
• Separated but coupled bus/core clock frequencies



ColdFire Pipeline
The ColdFire pipeline consists of
• a Fetch Pipeline of 4 stages

– Instruction Address Generation (IAG)
– Instruction Fetch Cycle 1 (IC1)
– Instruction Fetch Cycle 2 (IC2)
– Instruction Early Decode (IED)

• an Instruction Buffer (IB) for 8 instructions
• an Execution Pipeline of 2 stages

– Decoding and register operand fetching (1 cycle)
– Memory access and execution (1 – many cycles)



•Two coupled pipelines

•Fetch pipeline performs
branch prediction

•Instruction executes in 
up two to iterations
through OEP

•Coupling FIFO buffer 
with 8 entries

•Pipelines share same bus

•Unified cache



• Hierarchical bus structure
• Pipelined K- and M-Bus
• Fast K-Bus to internal

memories
• M-Bus to integrated

peripherals
• E-Bus to external memory
• Busses independent
• Bus unit: K2M, SBC, 

Cache



Model with Units and Signals
Opaque components - not modeled: 

thrown away in the analysis 
(e.g. registers up to memory accesses)

Concrete State 
Machine Abstract Model

Opaque Elements
Units & Signals

Abstraction of 
components

Reduced Model



Model for the MCF 5307
State: 

Address | STOP

Evolution:
wait, x => x, ---
set(a), x    => a+4, addr(a+4)
stop, x => STOP, ---
---,a        => a+4,addr(a+4)



Abstraction
• We abstract reduced states

– Opaque components are thrown away
– Caches are abstracted as described
– Signal parameters: abstracted to memory address

ranges or unchanged
– Other components of units are taken over unchanged

• Cycle-wise update is kept, but
– transitions depending on opaque components before

are now non-deterministic
– same for dependencies on unknown values



Nondeterminism

• In the reduced model, one state resulted in one
new state after a one-cycle transition

• Now, one state can have several successor states
– Transitions from set of states to set of states



Implementation

• Abstract model is implemented as a DFA
• Instructions are the nodes in the CFG
• Domain is powerset of set of abstract states
• Transfer functions at the edges in the CFG iterate

cycle-wise updating each state in the current abstract
value

• max {# iterations for all states} gives WCET 
• From this, we can obtain WCET for basic blocks



Tool Architecture



A Simple Modular Structure

Value Analysis Static determ. of effective addresses

Depend. Analysis Elim. of true data dependences

Cache Analysis Annotation of instructions with Hit

Pipeline Analysis Safe abstract execution based on the
available static information



Corresponds to the Following Sequence of Steps

1. Value analysis
2. Cache analysis using statically computed 

effective addresses and loop bounds
3. Pipeline analysis 

• assume cache hits where  predicted,
• assume cache misses where predicted or not 

excluded.
• Only the “best” result states of an instruction need 

to be considered as input states for successor 
instructions! (no timing anomalies)



The Tool-Construction Process
Concrete Processor Model
(ideally VHDL; currently documentation, FAQ, experimentation)

Reduction; 
Abstraction

Abstract Processor Model
(VHDL)

Formal Analysis,         Tool Generation

WCET Tool
Tool

Architecture:
modular or 
integrated



Why integrated analyses?
• Simple modular analysis not possible for 

architectures with unbounded interference 
between processor components

• Timing anomalies (Lundquist/Stenström): 
– Faster execution locally assuming penalty
– Slower execution locally removing penalty

• Domino effect: Effect only bounded in length of 
execution



Integrated Analysis

• Goal: calculate all possible abstract processor states at 
each program point (in each context)
Method: perform a cyclewise evolution of abstract 
processor states, determining all possible successor states

• Implemented from an abstract model of the processor:
the pipeline stages and communication between them

• Results in WCET for basic blocks



Timing Anomalies
Let ΔTl be an execution-time difference between two 

different cases for an instruction,
ΔTg the resulting difference in the overall execution time.
A Timing Anomaly occurs if either 
• ΔTl< 0: the instruction executes faster, and 

– ΔTg < ΔT1: the overall execution is yet faster, or 
– ΔTg > 0: the program runs longer than before. 

• ΔTl > 0: the instruction takes longer to execute, and    
– ΔTg > ΔTl: the overall execution is yet slower, or 
– ΔTg < 0: the program takes less time to execute than before



Timing Anomalies
ΔTl< 0 and ΔTg > 0: 

Local timing merit causes global timing penalty
is critical for WCET: 
using local timing-merit assumptions is unsafe 

ΔTl > 0 and ΔTg < 0:
Local timing penalty causes global speed up
is critical for BCET:
using local timing-penalty assumptions is unsafe 



Timing Anomalies - Remedies
• For each local ΔTl there is a corresponding set of 

global ΔTg 
Add upper bound of this set to each local ΔTl in a 
modular analysis
Problem: Bound may not exist ⇒
Domino Effect: anomalous effect increases with 
the size of the program (loop).
Domino Effect on PowerPC (Diss. J. Schneider)

• Follow all possible scenarios in an integrated 
analysis



Examples

• ColdFire: Instruction cache miss preventing a 
branch misprediction

• PowerPC: Domino Effect (Diss. J. Schneider)



Challenges for the MC Community I

WCET determination by MC
• cf. VMCAI’04
• Campos/Clarke 2000 assume unit-time transitions
• Abstract Interpretation is losing information through 

abstraction
• MC could have complete information
• Experience shows that AI is not losing much information
• Are there cases, where AI’s loss is too high, and where MC 

still terminates in acceptable time?



Challenges for the MC Community II
Partial-order reduction for out-of-order architectures
• Out-of-order execution of instructions increases 

#paths to consider
• Naïve PO reduction is unsafe: different orders 

may make a timing difference
• Can clever PO reduction still help? 



MC for Architecture/Software Properties

• Checking for the potential of Timing Anomalies
in a processor

• Checking for the potential of Timing Anomalies
in a processor and a program

• Checking for the potential of Domino Effects in a 
processor 

• Checking for the potential of Domino Effects in a 
processor and a program



Checking for Timing Anomalies

s Δ0 Δ1 Δ2 Δ4 Δ5

i1

i1

i2

i2 i3

i3

i4

i4

At each step, check for the conditions for TA
Note: Counting and comparing execution times is required!



Bounded Model Checking
• TA will occur on paths of bounded lengths
• Bounds depend on architectural parameters

– Length of the pipeline
– Length of queues, e.g., prefetch queues, instruction 

buffers
– Maximal latency of instructions

• No TA condition satisfied inside bound ⇒ no TA
• How to determine the bound is open



Checking for Domino Effects
• Identify cycle with TA (under equality of abstract 

states), (analogy to Pumping Lemma)
• Cycle will increase anomalous effect



Why integrated analyses?
• Simple modular analysis not possible for 

architectures with unbounded interference 
between processor components

• Timing anomalies (Lundquist/Stenström): 
– Faster execution locally assuming penalty
– Slower execution locally removing penalty

• Domino effect: Effect only bounded in length of 
execution



Examples

• ColdFire: Instruction cache miss preventing a 
branch misprediction

• PowerPC: Domino Effect (Diss. J. Schneider)



Integrated Analysis

• Goal: calculate all possible abstract processor states at 
each program point (in each context)
Method: perform a cyclewise evolution of abstract 
processor states, determining all possible successor states

• Implemented from an abstract model of the processor:
the pipeline stages and communication between them

• Results in WCET for basic blocks



Integrated Analysis II

• Abstract state is a set of (reduced) concrete 
processor states, 
computed: superset of the collecting semantics

• Sets are small, 
pipeline is not too history sensitive

• Joins are set union



Loop Counts
• loop bounds have to be known
• user annotations are needed

# 0x0120ac34 -> 124 routine _BAS_Se_RestituerRamCritique
0x0120ac9c 20



Overall Structure

CFG Builder

Value Analyzer

Cache/Pipeline 
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

CRL
File

PER
File

Loop Trafo

WCET
Visualization

Loop
bounds

AIP
File

Processor-Behavior
Prediction

Worst-case Path
Determination



• Execution time of a program =
∑ Execution_Time(b) x Execution_Count(b)

• ILP solver maximizes this function to determine 
the WCET

• Program structure described by linear constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to exclude 

infeasible paths

Basic_Block b

Path Analysis 
by Integer Linear Programming (ILP)



if  a then 
b

elseif c then
d

else
e

endif
f

a

b
c

d

f

e

10t

4t

3t

2t

5t

6t

max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa =  xb +  xc

xc =  xd +  xe

xf =  xb +  xd +  xe
xa =  1

Value of objective function: 19
xa 1
xb 1
xc 0
xd 0
xe 0
xf 1

Example (simplified constraints)



Analysis Results (Airbus Benchmark)



Interpretation

• Airbus’ results obtained with legacy method:
measurement for blocks, tree-based composition, 
added safety margin

• ~30% overestimation
• aiT’s results were between real worst-case 

execution times and Airbus’ results



MCF 5307: Results
• The value analyzer is able to predict around 70-90% of 

all data accesses precisely (Airbus Benchmark) 
• The cache/pipeline analysis takes reasonable time and 

space on the Airbus benchmark
• The predicted times are close to or better than the ones

obtained through convoluted measurements
• Results are visualized and can be explored interactively 



Timing-Analysis Tool aiT



• Combines global program analysis by abstract interpretation
for cache, pipeline, and value analysis with integer linear 
programming for path analysis in a single intuitive GUI.

aiT WCET Analyzer
A Solution to the Timing Problem



aiT WCET Analyzer Structure

CFG Builder

Value Analyzer

Cache/Pipeline 
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

CRL
File

PER
File

Loop Trafo

WCET
Visualization

Loop
bounds

AIP
File



Input/Output

INTERPROC: vivu4
MEMORY_AREA: 0 0xFFFFFFFE 1:1 1 READ&WRITE CODE&DATA

Parameters (*.aip) clock 10200 kHz ;
loop "_codebook" + 1 loop exactly 16 end ;
recursion "_fac" max 6;
SNIPPET "printf" IS NOT ANALYZED AND TAKES MAX 333 CYCLES;
flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;
area from 0x20 to 0x497 is read-only;

Specifications (*.ais)

Entry Point

Worst Case Execution Time

Visualization, Documentation

aiT

void Task (void){ variable++;function();next++:if (next)do this;terminate()}

Application Code

Executable (*.elf / *.out)
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Compiler  
Linker



Interprocedural
Analysis/

Analysis of 
Loops

• Loops are analyzed like 
procedures

• This allows for 
– Virtual inlining
– Virtual unrolling
– Better address resolution
– Burst accesses
– Selectable precision

• Optional user constraints



Challenge: Reconstruction of CFG
• Indirect Jumps

– Case/Switch statements as compiled by the C-compiler are 
automatically recognized

– For hand-written assembly code annotations might be necessary
INSTRUCTION ProgramPoint BRANCHES 
TO Target1, …, Targetn

• Indirect Calls
– Can often be recognized automatically if a static array of function 

pointers is used
– For other cases
INSTRUCTION ProgramPoint CALLS 
Target1, …, Targetn



Loops

• aiT includes a loop bound analysis based on 
interval analysis and pattern matching that is able 
to recognize the iteration count of many „simple“
FOR loops automatically

• Other loops need to be annotated
– Example: 
loop "_prime" + 1 loop end max 10;



/* X-vector: ascending linear search. */

...

while ( x > *(x_table++) ) low++;

...

/* Y-vector: descending linear search. */

...

do {

--y_low;

--y_table;

} while ( y < *y_table );

...

aiT produces automatic „Proposals“ for loop iterations:
Data dependent loop bound of [0,5] iterations detected. Please verify this!

Data dependent loop bound of [1,5] iterations detected. Please verify this!

TargetLink Loops



function(map m) {

...

for((map->ctr1->low = 1); (map->ctr1->low <= 3); (map->ctr1->low++)) {

for((map->ctr2->low = 1); (map->ctr2->low <= 6); (map->ctr2->low++)) {

/* code with memory accesses via pointers.... */ 

}

}

...

ASCET-SD Loops

aiT produces automatic „Proposals“ for loop iterations:
Data dependent loop bound of [3] iterations detected. Please verify this!

Data dependent loop bound of [6] iterations detected. Please verify this!



Source Level Annotations
bool divides (uint n, uint m) {
/* ai: SNIPPET HERE NOT ANALYZED, TAKES MAX 173 CYCLES; */
return (m % n == 0);

}

bool prime (uint n) {
uint i;
if (even (n))
/* ai: SNIPPET HERE INFEASIBLE; */

return (n == 2);
for (i = 3; i * i <= n; i += 2) {
/* ai: LOOP HERE MAX 20; */

if (divides (i, n))
return 0;

}
return (n > 1);

}



Integration Example:
StackAnalyzer/osCAN

OIL Configurator

TaskEvent
RessourceMode

OIL-File

Code Generator
void Task (void){ variable++;function();next++:if (next)do this;terminate()}

OS-Source Code

void Task (void){ variable++;function();next++:if (next)do this;terminate()}

Application 

*.elf / *.src-File
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Compiler  
Linker

Stack
Generator

Configuration

StackAnalyzer

Target



StackAnalyzer Results

Maximum
system stack usage

Maximum
User stack usage

(osCAN C16x/ST10)

Category 1 ISR

Task context offset 



Conclusion I

• Automatic loop bound and „array call“ recognition 
by static analysis reduces the amount of user 
annotations dramatically

• For situations where automatic analysis fails, 
convenient specification and annotation formats 
are available

• Annotations for library functions (RT, 
communication) and RTOS functions can be 
provided in separate files by the respective 
developers (on source level or separately)



Preliminary feedback from automotive 
users

• Providing the annotations (targets of indirect 
function calls and loop bounds) can require some 
effort

• Precision 9
– “Arbitrary ILP constraints” basically not used

• Analysis speed 9
• Integration into development process still to be 

done



Conclusion II 

� aiT enables development of 
complex hard real-time systems 
on state-of-the-art hardware.

� Increases safety.

� Saves development time.

� Precise timing predictions enable
the most cost-efficient hardware 
to be chosen.



email: info@AbsInt.com
http://www.AbsInt.com



� aiT WCET Analyzer helps developers of safety-critical 
applications to verify that their programs will always react
fast enough.  

aiT WCET Analyzer
The Product



Pr
ob

ab
ili

ty

Execution Time

Exact Worst Case
Execution Time

aiT WCET Analyzer
The Solution to the Timing Problem

HUGE overestimation
by naive WCET methodsaiT WCET Analyzer results:

• safe 
• precise (close to exact WCET)
• computed automatically
• valid for all inputs and any
execution context



aiT: Timing Details



aiT WCET Analyzer
Visualization



aiT: Timing Details



aiT: Timing Details



aiT WCET Analyzer
• Input: an executable program, starting points, loop iteration counts, call targets of indirect 

function calls, and a description of bus and memory speeds
• Computes Worst-Case Execution Time bounds of tasks 



Example

• Annotations for memcopy() of C-runtime library 
(handwritten assembly code)
– instruction "C_MEMCPY" + 1 computed 
branches to pc + 0x04 bytes, 

pc + 0x14 bytes, 
pc + 0x24 bytes;

– instruction "C_MEMCPY" + 2 computed 
branches to pc + 0x10 bytes, 

pc + 0x20 bytes;



Other Annotations

• Upper bounds for the recursion depths of all recursive 
routines.

• Flow constraints relate the execution counts of any two 
basic blocks. Example : flow 0x100 / 0x200 is 
max 4;

• Values of registers
• Memory area is read-only
• WCET of routines (excluded from WCET analysis) 
• Never executed (excludes a path from WCET analysis)



aiT WCET Analyzer
The Future

� From verification to design

� From avionics to 
� automotive
� consumer electronics
� communication



aiT WCET Analyzer Advantages

• aiT WCET analyzer allows you to:
– inspect the timing behavior of (timing critical parts

of) your code 

• The analysis results
– are determined without the need to change the code
– hold for all executions (for the intrinsic cache and 

pipeline behavior)



aiT WCET Analyzer Advantages
• The results are precise
• The computation is fast
• aiT WCET analyzer is easy to use
• aiT WCET analyzer works on optimized code
• aiT WCET analyzer saves development time by 

avoiding the tedious and time consuming (instrument
and) execute (or emulate) and measure cycle for a set
of inputs over and over again



aiT WCET Analyzer
European Perspective

� Europe is leading in program analysis and WCET research.
� AbsInt actively participates in the definition of a European WCET

research framework (NoE).

IST Project DAEDALUS final review report: 
"The AbsInt tool is probably the
best of its kind in the world and it 
is justified to consider this result 
as a breakthrough.”



Analysis of the Stack Memory 
Usage

void Task (void){ variable++;function();next++:if (next)do this;terminate()}

Application

Compiler  
Linker

Executable
(*.elf / *.src)
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StackAnalyzer

<function_name> <ustack> <sstack> ...

Extern Definition File 
(*.dat)

routine_name: lim

Limit File          
(*.dat)

Stack Pointer (relative to the 
value at the entry point)

Visualization

Documentation

Entry Point



















Analysis Results (Airbus Benchmark)



Current State and Future Work
• WCET tools available for the ColdFire 5307, the PowerPC 

755, and the ARM7
• Learned, how time-predictable architectures look like
• Adaptation effort still too big => automation
• Modeling effort error prone => formal methods
• Middleware, RTOS not treated => challenging!

All nice topics for AVACS!



Who needs aiT?
• TTA

• Synchronous languages 

• Stream-oriented people

• UML real-time profile

• Hand coders
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