
- 1 -BF - ES

Embedded Systems 23

- 2 -BF - ES

Measurement vs. Analysis
Pr

ob
ab

ili
ty

Execution Time

Best Case
Execution Time

Worst Case
Execution Time

Upper bound
Unsafe:
Execution Time
Measurement

• typically huge variations in ET depending on input, cache effects,…
• cannot be covered within product development time
• rules of thumb add safety margins: pessimistic? optimistic?

REVIEW

- 3 -BF - ES

Execution time of a program =

∑ Execution_Time(b) x Execution_Count(b)

ILP solver maximizes this function to determine the WCET
Program structure described by linear constraints

automatically created from CFG structure
needs info about loop/recursion bounds
additional linear constraints may be added to exclude infeasible paths
(contradictory conditions,…)

Basic_Block b

Path Analysis
by Integer Linear Programming (ILP)

REVIEW

- 4 -BF - ES

Timing Analysis

1. For each instruction, determine possible ET in context:
• Determine possible processor behavior at instruction
• Exclude timing accidents when context renders them impossible
• Determine instruction WCET and BCET based on this

2. Accumulate across basic blocks
• Determines safe bounds for WCET and/or BCET for basic blocks (with contextual

info. inherited)

3. Worst-case Path Determination
• Maps cost-annotated (WCET/BCET) control flow graph to an integer linear program
• Determines paths with extremal (max./min.) cost
• Thus determines WCET / BCET of complete task

REVIEW

- 5 -BF - ES

Abstract Interpretation

Semantics-based method for static program analysis
Basic idea: Perform the program’s computations using
abstract values in place of the concrete values

Abstract domain = complete semilattice related to
concrete domain by abstraction and concretization
functions
Abstract transfer functions for each statement type =
abstract versions of their semantics
Join function: combining abstract values from different
control-flow paths (lub on lattice)

REVIEW

- 6 -BF - ES

Abstract Domain: Must Cache

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

α

Abstraction

Representing sets of concrete caches by their description
concrete caches

{ }
{ }

{z,x}
{s}

abstract cache

REVIEW

- 7 -BF - ES

Abstract Domain: Must Cache

{ }
{ }

{z,x}
{s}

γ

Concretization

{s∈
{z, x ∈

Sets of concrete caches described by an abstract cache

remaining line filled up
with any other block

concrete caches

abstract cache

REVIEW

- 8 -BF - ES

Lattice for Must Cache

Set A of elements
Information order v
Join operator t
Top element >
Bottom element ⊥

{ }
{ }
{z}
{s}

{ }
{z}
{x}
{s}

v
“young”

“old”

Age

Better precision:

more elements in the cache or
with younger age.

NB. The more precise abstract
cache represents less
concrete cache states!

REVIEW

- 9 -BF - ES

Lattice: Must Cache

Set A of elements
Information order v
Join operator t
Top element >
Bottom element ⊥

{ a }
{ }

{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{ }
{ }

{ a, c }
{ d }

t

Form the intersection and

associate the elements with

the maximum of their ages

“young”

“old”

Age

REVIEW

- 10 -BF - ES

Lattice: Must Cache

Set A of elements
Information order v
Join operator t
Top element >
Bottom element ⊥

{ }
{ }
{ }
{ }

“young”

“old”

Age

No information:

All caches possible

REVIEW

- 11 -BF - ES

Lattice: Must Cache

Set A of elements
Information order v
Join operator t
Top element >
Bottom element ⊥

Dedicated unique bottom
element representing the
empty set of caches

REVIEW

- 12 -BF - ES

Galois connection –
Relating Semantic Domains

Lattices C, A
two monotone functions α and γ

Abstraction: α: C → A
Concretization γ: A → C
(α,γ) is a Galois connection
if and only if

γ • α wC idC and α • γ vA idA

Switching safely between concrete and abstract domains, possibly
losing precision

- 13 -BF - ES

Abstract Domain Must Cache
γ • α wC idC

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

{ }
{ }

{z,x}
{s}

α

γ

safe, but may lose
precision

{s∈
{z, x ∈

concrete caches

abstract cache

remaining line
filled up with any
memory block

- 14 -BF - ES

Result of the Cache Analysis

 Category Abb. Meaning

 always hit ah The memory reference will

 always result in a cache hit.

 always miss am The memory reference will

 always result in a cache miss.

 not classified nc The memory reference could

 neither be classified as ah

 nor am.

Categorization of memory references

WCET: ah improves bound, nc and am count as pot. miss
BCET: am tightens bound, nc and ah count as potent. hit

REVIEW

- 15 -BF - ES

Realtime Calculus

- 16 -BF - ES

System Composition

Scheduling and Arbitration
Templates

proportional
shareWFQ

staticdynamic
fixed priority

EDF
TDMA

FCFS

Communication Templates Computation Templates

DSPDSP

μCμC CAN
interface
CAN

interface

SDRAMSDRAM

RISCRISC
ECUECU

Architecture

RIS
C

RIS
C

SDRA
M

SDRA
M

ECUECU

priority

EDF

ECUECU

- 17 -BF - ES

A Four-Step Approach

1. Abstraction: Build abstract models for “first class
citizens”
event streams -> abstract event streams
architecture elements -> resource modules
application processes -> performance modules

2. Performance Components: Combine performance
modules using resource sharing information

3. Performance Network: Combine all models to a
network that represents the performance aspects

4. Analysis

- 18 -BF - ES

The “Big Picture”

Application Specification

Abstract Application

Abstract Architecture

Architecture Specification

Performance Network

T1 T2 T3

ARM9 DSP

load
scenarios

architecture
elements

mapping
relations

application
process event

streams

resource
modules

performance
modules

abstract event
streams

abstract load
scenarios

performance
components

- 19 -BF - ES

Step 1: Abstract Application Model

From a functional model…

event stream application
process

(e.g. StateCharts
…)

- 20 -BF - ES

Step 1: Abstract Functional Units

… to an abstract application model

performance
module

abstract
event stream

abstract
resource
stream

- 21 -BF - ES

Step 2: Build Performance Components

Fixed
Priority

(FP)

- 22 -BF - ES

Step 3 and 4: Compose and Analyze

ARM9 DSP2Bus DSP1

β’’ β’’ β’ β’

FP GPS FP

β β β

α

GPS GPS FP

β’ β’

β

α

Application 1

Application 2

- 23 -BF - ES

max: 2 packets
min: 0 packets
max: 3 packets
min: 1 packet

αu

αl

ΔΔ Δ

Event & Resource Models

Use arrival curves to capture packet streams:

time t

max: 1 packet
min: 0 packets

Δ0 1 2

of packets

1
2
3

- 24 -BF - ES

Arrival curves

1

2

3

ΔT 2T 3T

u
α

l
α 1

2

3

ΔT 2T 3T

u
α

l
α

T-J T+J

periodic event stream periodic event stream with jitter

Arrival curves describe the maximum and minimum
number of events arriving in some time interval Δ

Examples:

- 25 -BF - ES

Arrival curves

Definition: Let R(t) denote the number of events that
arrive on an event stream in the time interval [0,t).
Then the following holds:

).0()0(

),()()()(
ul

ul
tsstsRtRst

αα

αα

=

<∀−≤−≤−

- 26 -BF - ES

Service curves

Service curves β u resp. β ℓ describe the maximum and
minimum service capacity available in some time interval Δ

s

T

bandwidth b
TDMA bus

Ts T-s T+s

bs

2T

uβ
lβ

Example:

- 27 -BF - ES

Service curves

Definition: Let C(t) denote the number of
communication or processing cycles available from a
resouce of the time interval [0,t).
Then the following holds:

).0()0(

),()()()(
ul

ul
tsstsCtCst

ββ

ββ

=

<∀−≤−≤−

- 28 -BF - ES

Workload characterization

γ u resp. γ ℓ describe the maximum and minimum service
capacity required as a function of the number e of events

1 2 3

4

8

12

16

e

WCET=4

BCET=3

Example

γ u

γ ℓ

- 29 -BF - ES

Workload required for incoming stream

() ()()Δ=Δ uuu αγα

Incoming workload

() ()()Δ=Δ lll αγα

Upper and lower bounds on the number of events

()()Δ=Δ − uu
βγβ 1)(()()Δ=Δ − ll

βγβ 1)(

- 30 -BF - ES

Transformation of Curves by Modules

],[ul αα

],[ul ββ

]','[ul αα

- 31 -BF - ES

Performance modules

Theorem: Given an event stream described by the arrival curves
αu, αl, and a resource described by the service curves βu, βl,
then the resulting service is bounded by

Δ≤∀−=Δ
Δ≤≤

0)},()({sup)(
0

λαλββ
λ

ull

- 32 -BF - ES

- 33 -BF - ES

Performance Modules

],[ul αα

],[ul ββ

],[ul ′′ αα

],[ul ′′ ββ

() () (){ }λλ
λ

−Δ+=Δ⊕
Δ≤≤

wvwv
0
inf

() () (){ }λλ
λ

−Δ+=Δ⊕
Δ≤≤

wvwv
0
sup () () (){ }λλ

λ
wvwv −+Δ=Δ⊗

≤0
sup

() () (){ }λλ
λ

wvwv −+Δ=Δ⊗
≤0

inf

() () () (){ }ΔΔ=Δ∧Δ wvwv ,min

uluuu βββαα ∧⊗⊕=′])([

llull βββαα ∧⊕⊗=′])[(

() 0⊗−=′ luu αββ

() 0⊕−=′ ull αββ

- 34 -BF - ES

Compose and Analyze

μPDSPI/O bus

fixed
prio.

prop.
share

fixed
prio.

fixed
prio.

],[u
a

l
a αα

]','[u
a

l
a αα

],[u
b

l
b αα

]','[u
b

l
b αα

]','[//
u

OI
l

OI ββ]','[u
bus

l
bus ββ]','[u

DSP
l

DSP ββ]','[u
P

l
P μμ ββ

- 35 -BF - ES

Compose and Analyze

delay d

backlog b

service curve βl

arrival curve αu

b

],[ul αα

],[ul ββ

- 36 -BF - ES

Application: In-Car Navigation System

Car radio with navigation system
User interface needs to be responsive
Traffic messages (TMC) must be processed in a timely
way
Several applications may execute concurrently

© Thiele, ETHZ

- 37 -BF - ES

System Overview

NAV RAD

MMI

DB

Communication

© Thiele, ETHZ

- 38 -BF - ES

NAV RAD

MMI

DB

Communication

Use case 1: Change Audio Volume

< 200 ms

< 50 ms

© Thiele, ETHZ

- 39 -BF - ES

Use case 1: Change Audio Volume

© Thiele, ETHZ

Communication
Resource
Demand

- 40 -BF - ES

NAV RAD

MMI

DB

Communication

< 200 ms

Use case 2: Lookup Destination Address

© Thiele, ETHZ

- 41 -BF - ES

Use case 2: Lookup Destination Address

© Thiele, ETHZ

- 42 -BF - ES

NAV RAD

MMI

DB

Communication

Use case 3: Receive TMC Messages

< 1000 ms

© Thiele, ETHZ

- 43 -BF - ES

Use case 3: Receive TMC Messages

© Thiele, ETHZ

- 44 -BF - ES

Proposed Architecture Alternatives

NAV RAD

MMI
22 MIPS

11 MIPS113 MIPS

NAV RAD

MMI
22 MIPS

11 MIPS113 MIPS

RAD
260 MIPS

NAV
MMI

22 MIPS

RAD
130 MIPS

MMI
NAV

113 MIPS

MMI
260 MIPS

RAD
NAV

72 kbps

72 kbps 57 kbps
72

 k
bp

s

72
 k

bp
s

(A)

(E)(D)(C)

(B)

© Thiele, ETHZ

- 45 -BF - ES

Step 1: Environment (Event Steams)

Event Stream Model

e.g. Address Lookup
(1 event / sec)

αu

αl

[s]

[events]

1

1

© Thiele, ETHZ

- 46 -BF - ES

Step 1: Architectural Elements

Event Stream Model

e.g. Address Lookup
(1 event / sec)

Resource Model

e.g. unloaded RISC CPU
(113 MIPS)

βℓ=βu

αu

αℓ

[s]

[s]

[MIPS]

[events]

1

1

1

113

© Thiele, ETHZ

- 47 -BF - ES

Step 2: Mapping / Scheduling

Rate Monotonic Scheduling
(Pre-emptive fixed priority scheduling):

Priority 1:Change Volume (p=1/32 s)

Priority 2:Address Lookup (p=1 s)

Priority 3:Receive TMC (p=6 s)

© Thiele, ETHZ

- 48 -BF - ES

Step 2: Performance Model

CPU1 BUS CPU3CPU2

Change Volume

Receive TMC

α
β β β

α

NAV RAD

MMI

Address Lookup

β

α

MMI NAV RAD

© Thiele, ETHZ

- 49 -BF - ES

Analysis – Design Question 1

How do the proposed system architectures
compare in respect to end-to-end delays?

© Thiele, ETHZ

- 50 -BF - ES

End-to-end delays: (A) (E)(D)(C)(B)

Analysis – Design Question 1

0

50

100

Vol Key 2 Audio [ms]

0

50

100

Address Lookup [ms]
0

500

1000

1500

TMC Decode [ms]

© Thiele, ETHZ

0

20

40

60

Vol Vis. 2 Audio [ms]

- 51 -BF - ES

Analysis – Design Question 2

How robust is architecture A?
Where is the bottleneck of this architecture?

NAV RAD

MMI
22 MIPS

11 MIPS113 MIPS

72 kbps

(A)

© Thiele, ETHZ

- 53 -BF - ES

TMC delay vs. MMI processor speed:

Analysis – Design Question 2

NAV RAD

MMI
22 MIPS

11 MIPS113 MIPS

72 kbps

(A)

26.4 MIPS

© Thiele, ETHZ

- 54 -BF - ES

Analysis – Design Question 3

Architecture D is chosen for further investigation.
How should the processors be dimensioned?

RAD
130 MIPS

MMI
NAV

113 MIPS 72
 k

bp
s(D)

© Thiele, ETHZ

- 55 -BF - ES

RAD
130 MIPS

MMI
NAV

113 MIPS 72
 k

bp
s

33 MIPS29 MIPS

Analysis – Design Question 3

dmax = 200

dmax = 1000

dmax = 50

dmax = 200

© Thiele, ETHZ

- 56 -BF - ES

Conclusions – Realtime Calculus

Easy to construct models
Evaluation speed is fast and linear to model complexity
(~ 1s per evaluation)
Needs little information to construct early models
(Fits early design cycle very well)
Results conservative (may underestimate performance)

© Thiele, ETHZ

