

Path Analysis

REVIEW

by Integer Linear Programming (ILP)

- Execution time of a program =
 - \(\sum_{\text{tecution_Time(b)}} \) \(\text{Execution_Count(b)} \)

Basic_Block b

- ILP solver maximizes this function to determine the WCET
- Program structure described by linear constraints
 - automatically created from CFG structure
 - needs info about loop/recursion bounds
 - additional linear constraints may be added to exclude infeasible paths (contradictory conditions,...)

BF-ES - 3-

REVIEW

Timing Analysis

- 1. For each instruction, determine possible ET in context:
 - Determine possible processor behavior at instruction
 - Exclude timing accidents when context renders them impossible
 - Determine instruction WCET and BCET based on this
- 2. Accumulate across basic blocks
 - Determines safe bounds for WCET and/or BCET for basic blocks (with contextual info. inherited)
- 3. Worst-case Path Determination
 - Maps cost-annotated (WCET/BCET) control flow graph to an integer linear program
 - Determines paths with extremal (max./min.) cost
 - Thus determines WCET / BCET of complete task

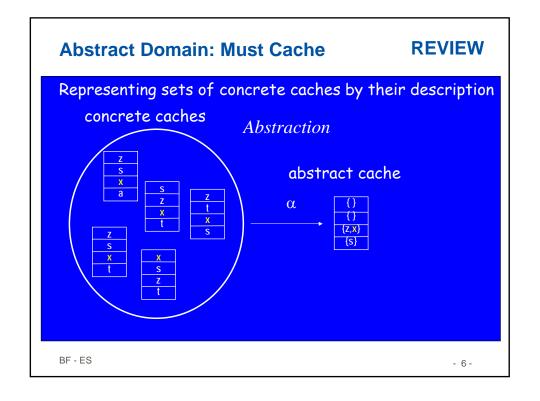
BF - ES - 4 -

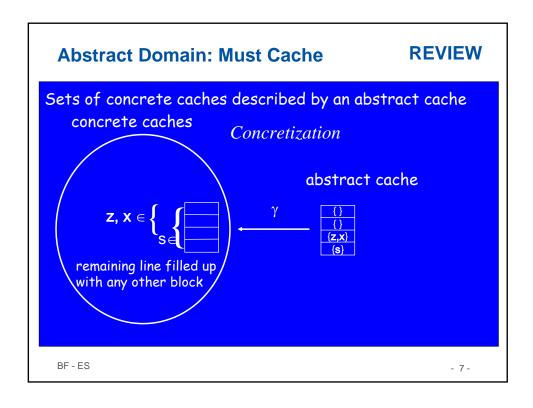
Abstract Interpretation

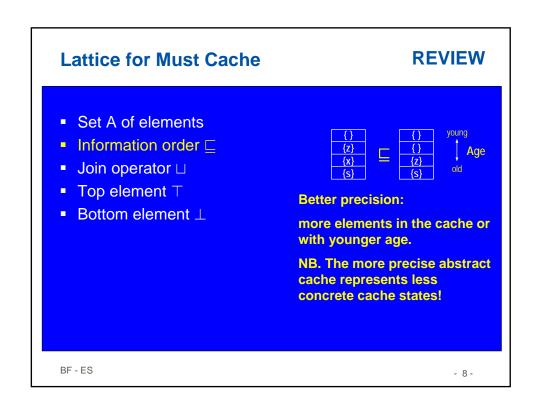
REVIEW

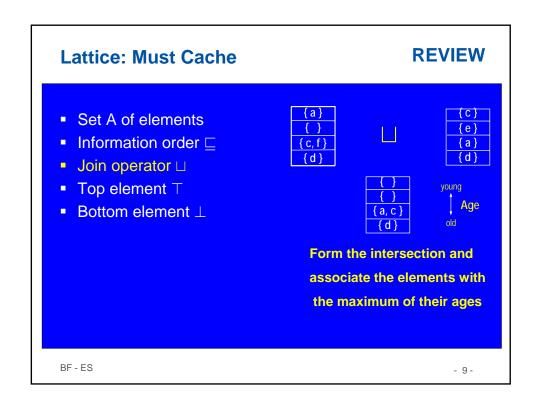
- Semantics-based method for static program analysis
- Basic idea: Perform the program's computations using abstract values in place of the concrete values
- Abstract domain = complete semilattice related to concrete domain by abstraction and concretization functions
- Abstract transfer functions for each statement type = abstract versions of their semantics
- Join function: combining abstract values from different control-flow paths (lub on lattice)

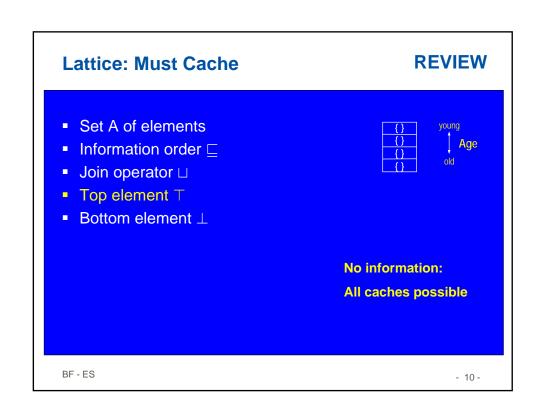
BF - ES - 5 -











Lattice: Must Cache

REVIEW

- Set A of elements
- Information order
- Join operator
- Top element T
- Bottom element ⊥

Dedicated unique bottom element representing the empty set of caches

BF - ES

- 11 -

Galois connection – Relating Semantic Domains

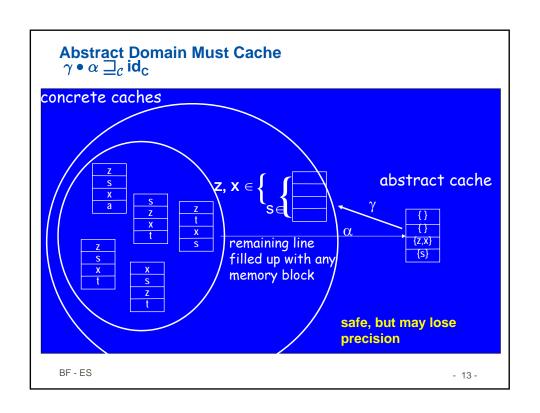
- Lattices C, A
- two monotone functions α and γ
- Abstraction: α : $C \rightarrow A$
- Concretization γ : A \rightarrow C
- (α, γ) is a Galois connection if and only if

$$\gamma \bullet \alpha \sqsupseteq_{\mathcal{C}} \mathrm{id}_{\mathsf{C}} \ \ \mathrm{and} \ \ \alpha \bullet \gamma \sqsubseteq_{\mathcal{A}} \mathrm{id}_{\mathsf{A}}$$

Switching safely between concrete and abstract domains, possibly losing precision

BF - ES

- 12 -



Result of the Cache Analysis

REVIEW

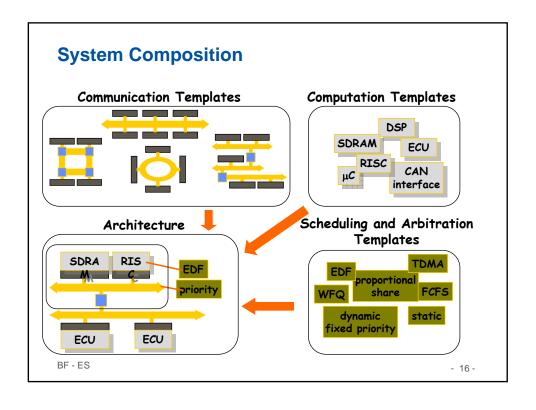
Categorization of memory references

Category	Abb.	Meaning
always hit	ah	The memory reference will always result in a cache hit.
always miss	am	The memory reference will always result in a cache miss.
not classified	nc	The memory reference could neither be classified as ah nor am .

WCET: ah improves bound, nc and am count as pot. miss BCET: am tightens bound, nc and ah count as potent. hit BF - ES

- 14 -

Realtime Calculus BF-ES - 15-



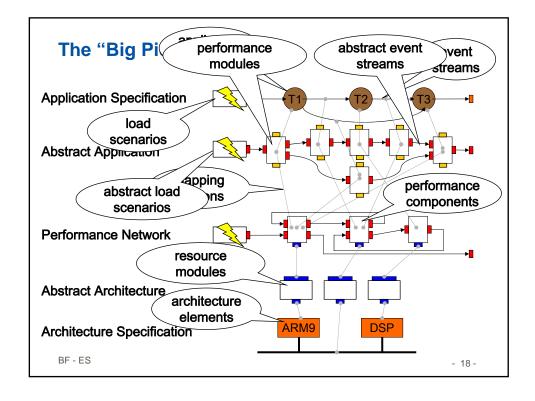
A Four-Step Approach

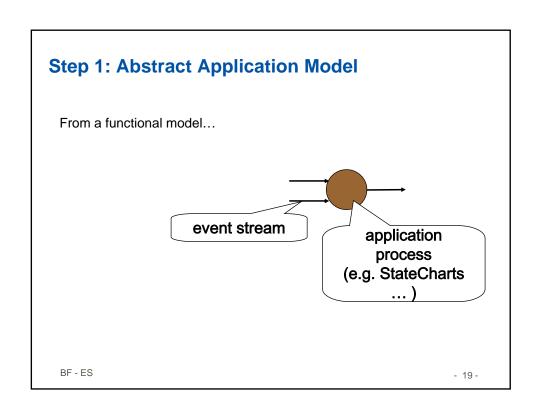
Abstraction: Build abstract models for "first class citizens"

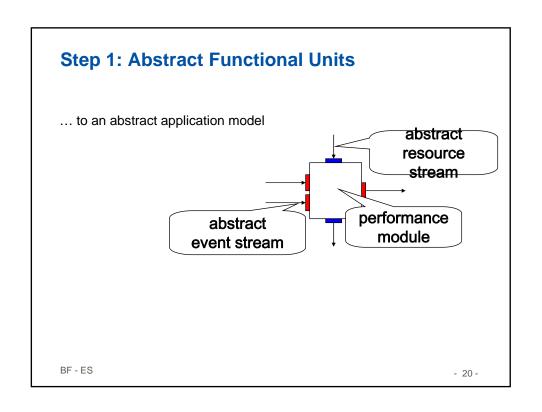
event streams -> abstract event streams architecture elements -> resource modules application processes -> performance modules

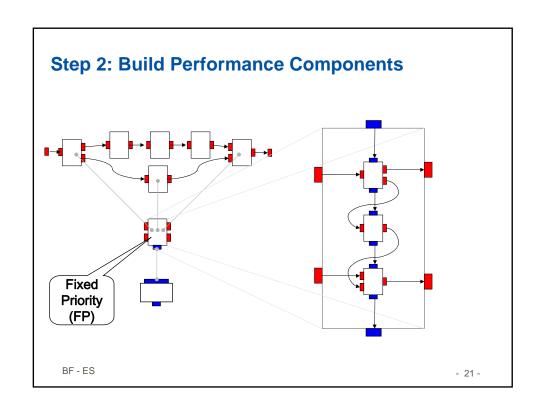
- Performance Components: Combine performance modules using resource sharing information
- 3. Performance Network: Combine all models to a network that represents the performance aspects
- 4. Analysis

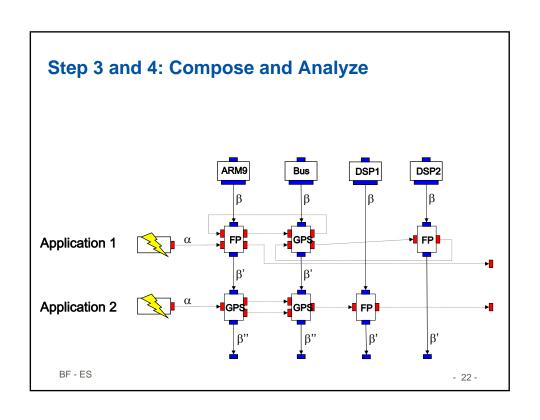
BF - ES - 17 -



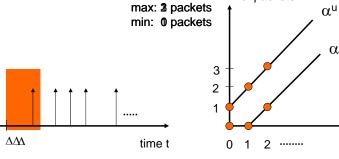








■ Use arrival curves to capture packet streams: max: 2 packets # of packets



BF-ES - 23-

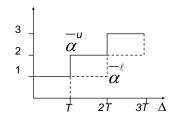
Arrival curves

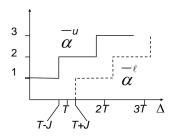
Arrival curves describe the maximum and minimum number of events arriving in some time interval Δ

Examples:

periodic event stream

periodic event stream with jitter





BF - ES

- 24 -

Arrival curves

Definition: Let R(t) denote the number of events that arrive on an event stream in the time interval [0,t). Then the following holds:

$$\overline{\alpha}^{l}(t-s) \le R(t) - R(s) \le \overline{\alpha}^{u}(t-s), \forall s < t$$

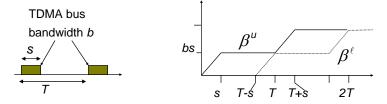
$$\overline{\alpha}^{l}(0) = \overline{\alpha}^{u}(0).$$

BF - ES - 25 -

Service curves

Service curves β^u resp. β^ℓ describe the maximum and minimum service capacity available in some time interval Δ

Example:



BF - ES - 26 -

Service curves

Definition: Let C(t) denote the number of communication or processing cycles available from a resouce of the time interval [0,t). Then the following holds:

$$\overline{\beta}^{l}(t-s) \le C(t) - C(s) \le \overline{\beta}^{u}(t-s), \forall s < t$$

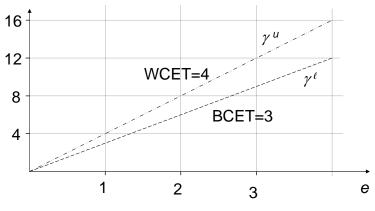
$$\overline{\beta}^{l}(0) = \overline{\beta}^{u}(0).$$

BF - ES - 27 -

Workload characterization

 γ^u resp. γ^ℓ describe the maximum and minimum service capacity required as a function of the number e of events

Example



BF - ES

- 28 -

Workload required for incoming stream

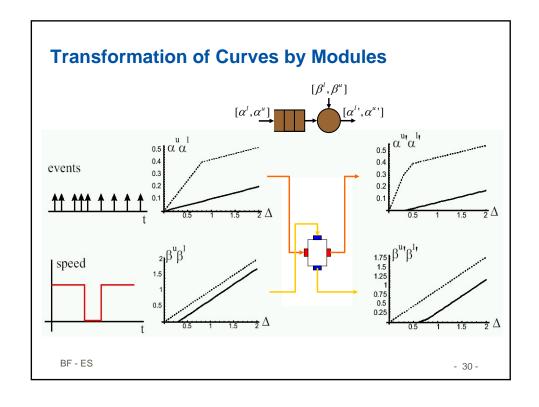
Incoming workload

$$\alpha^{u}(\Delta) = \gamma^{u}(\overline{\alpha^{u}}(\Delta)) \qquad \qquad \alpha^{\ell}(\Delta) = \gamma^{\ell}(\overline{\alpha^{\ell}}(\Delta))$$

Upper and lower bounds on the number of events

$$\overline{\beta}^{u}(\Delta) = \gamma^{-1}(\beta^{u}(\Delta)) \qquad \overline{\beta}^{\ell}(\Delta) = \gamma^{-1}(\beta^{\ell}(\Delta))$$

BF-ES - 29-



Performance modules

Theorem: Given an event stream described by the arrival curves α^u , α^l , and a resource described by the service curves β^u , β^l , then the resulting service is bounded by

$$\beta^{l}(\Delta) = \sup_{0 \le \lambda \le \Delta} \{\beta^{l}(\lambda) - \alpha^{u}(\lambda)\}, \forall 0 \le \Delta$$

$$C[O_{l}\times) - R[C_{0,\times}]$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{2}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{2}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{2}$$

$$C_{4}$$

$$C_{4}$$

$$C_{5}$$

$$C_{7}$$

$$C$$

$$C' [S_{1}t] = C' [C_{0}t] - C' [C_{0}t]$$

$$C' [S_{1}t] = \sup_{0 \le a \le t} \{ C[C_{0}(a)] - R[C_{0}(a)] \}$$

$$C' [S_{1}t] = \sup_{0 \le a \le t} \{ C[C_{0}(a)] - R[C_{0}(a)] \}$$

$$S = t = 2 | b \le a$$

$$= \inf_{0 \le b \le t} \{ \sup_{0 \le a \le t} \{ C[C_{0}(a)] - C[C_{0}(b)] \}$$

$$= \inf_{0 \le b \le t} \{ \sup_{0 \le a \le t} \{ C[C_{0}(a)] - R[C_{0}(a)] \}$$

$$= \inf_{0 \le b \le t} \{ \sup_{0 \le a \le t} \{ C[C_{0}(a)] - R[C_{0}(a)] \}$$

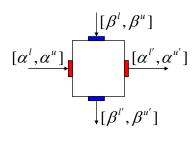
$$0 \le b \le t = 2 | c \le t = 2$$

Performance Modules

$$v(\Delta) \wedge w(\Delta) = \min\{v(\Delta), w(\Delta)\}\$$

$$v \oplus w(\Delta) = \inf_{0 \le \lambda \le \Delta} \{v(\lambda) + w(\Delta - \lambda)\} \qquad v \otimes w(\Delta) = \inf_{0 \le \lambda} \{v(\Delta + \lambda) - w(\lambda)\}\$$

$$v \oplus w(\Delta) = \sup_{0 \le \lambda \le \Delta} \{v(\lambda) + w(\Delta - \lambda)\} \qquad v \otimes w(\Delta) = \sup_{0 \le \lambda} \{v(\Delta + \lambda) - w(\lambda)\}\$$



$$\alpha^{u'} = [(\alpha^u \underline{\oplus} \beta^u) \overline{\otimes} \beta^l] \wedge \beta^u$$

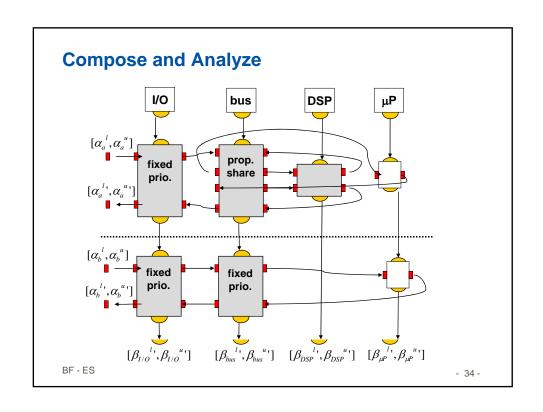
$$\alpha^{l'} = [(\alpha^l \overline{\otimes} \beta^u) \underline{\oplus} \beta^l] \wedge \beta^l$$

$$\beta^{u'} = (\beta^u - \alpha^l) \underline{\otimes} 0$$

$$\beta^{l'} = (\beta^l - \alpha^u) \overline{\oplus} 0$$

BF - ES

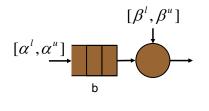
- 33 -

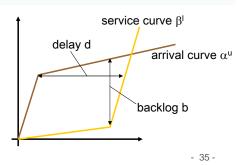


Compose and Analyze

Delay and Memory

$$d(t) = \inf\{\tau \ge 0 : R(t) \le R'(t+\tau)\} \le \sup_{u \ge 0} \left\{ \inf\{\tau \ge 0 : \alpha^{u}(u) \le \beta^{l}(u+\tau)\} \right\}$$
$$b(t) = R(t) - R'(t) \le \sup_{u \ge 0} \{\alpha^{u}(u) - \beta^{l}(u)\}$$





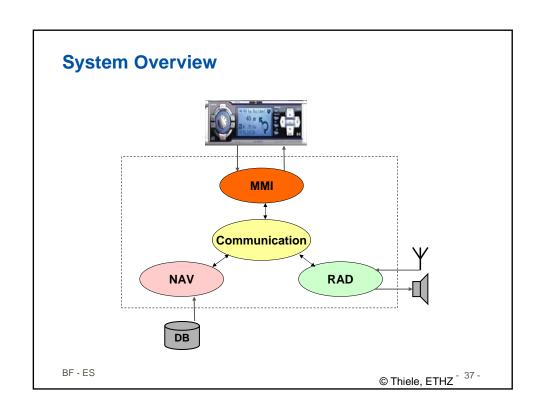
BF - ES

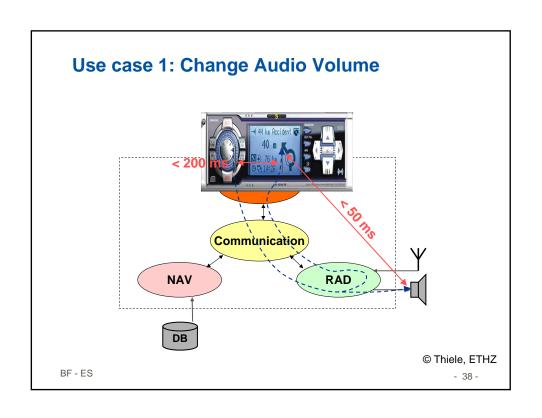
Application: In-Car Navigation System

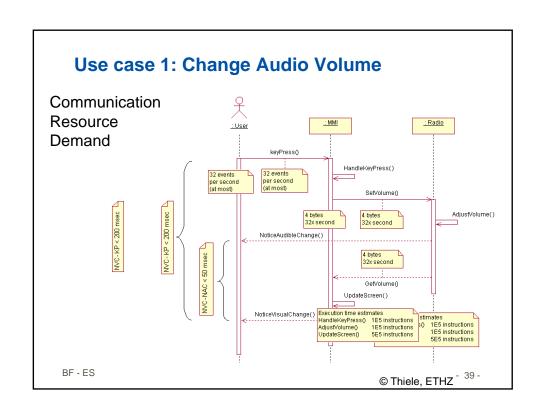
- Car radio with navigation system
- User interface needs to be responsive
- Traffic messages (TMC) must be processed in a timely way
- Several applications may execute concurrently

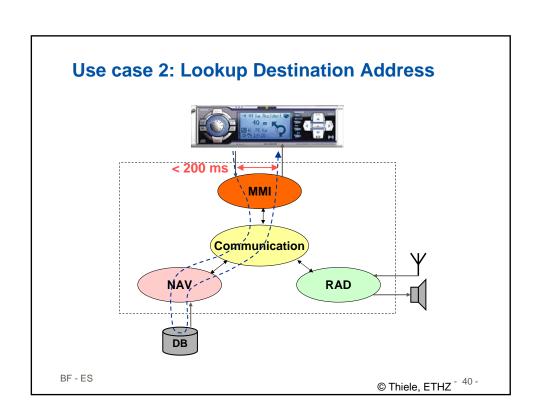
BF - ES

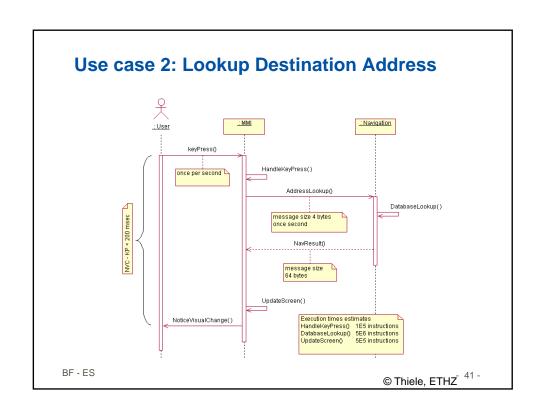
- 36 -

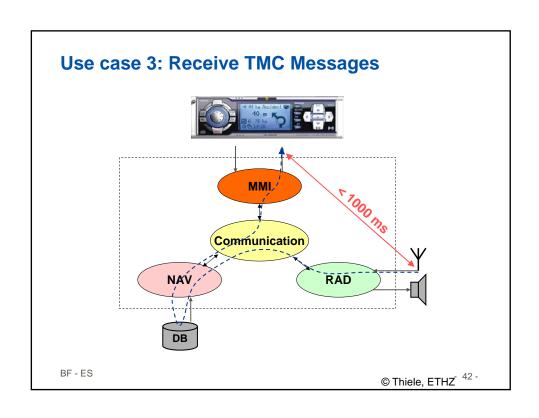


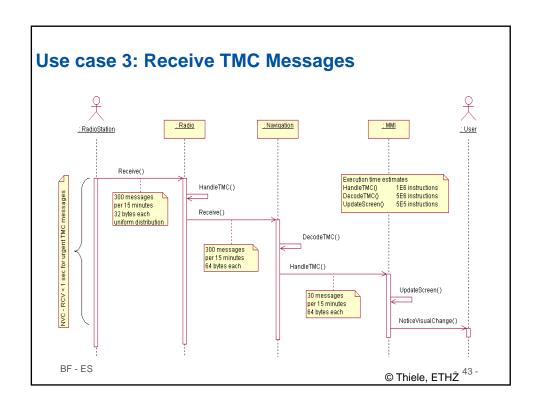


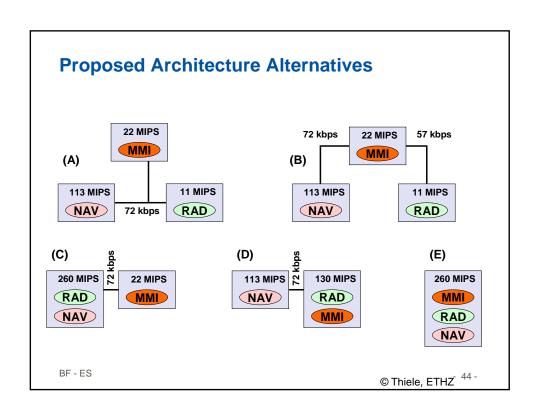


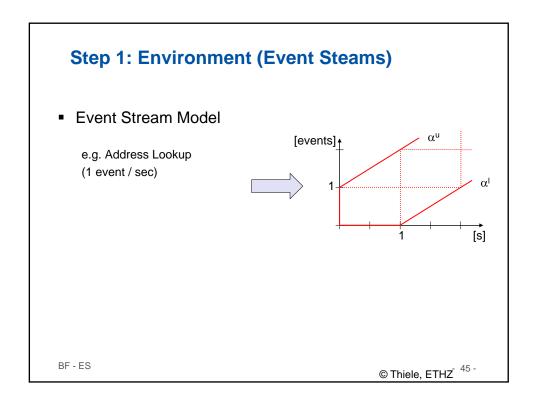


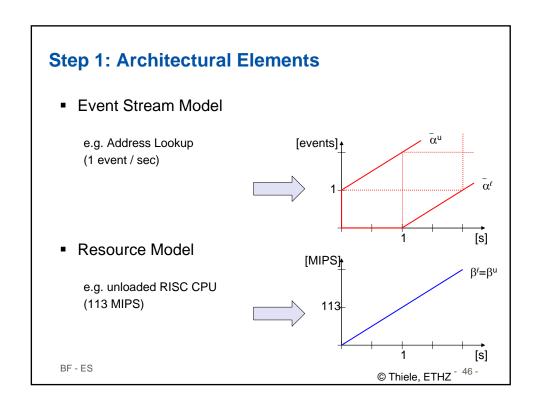












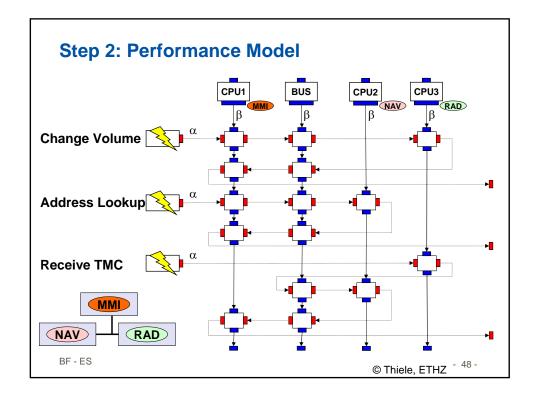
Step 2: Mapping / Scheduling

 Rate Monotonic Scheduling (Pre-emptive fixed priority scheduling):

Priority 1:Change Volume (p=1/32 s)
 Priority 2:Address Lookup (p=1 s)

Priority 3:Receive TMC (p=6 s)

BF - ES © Thiele, ETHZ - 47 -

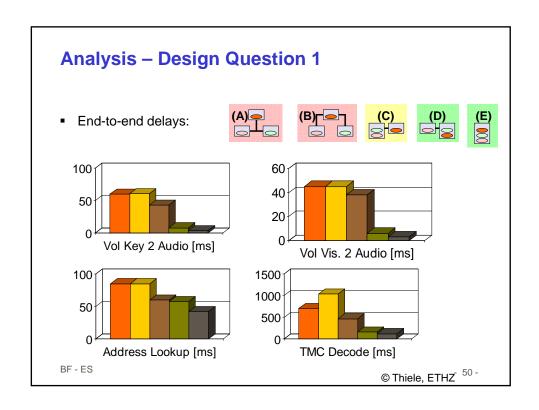


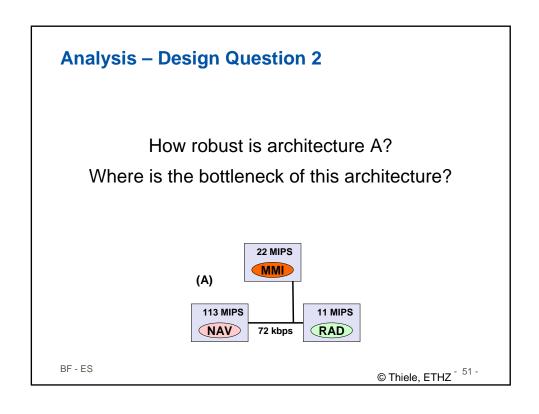
Analysis – Design Question 1

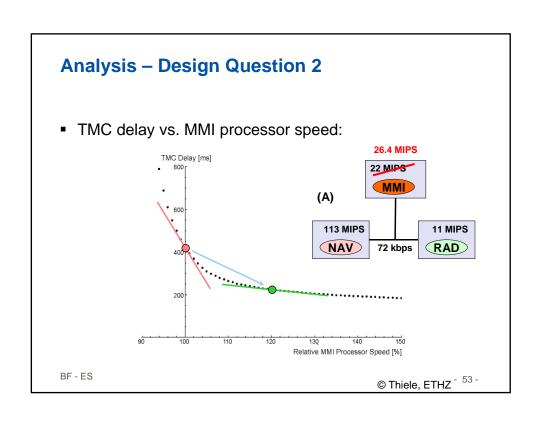
How do the proposed system architectures compare in respect to end-to-end delays?

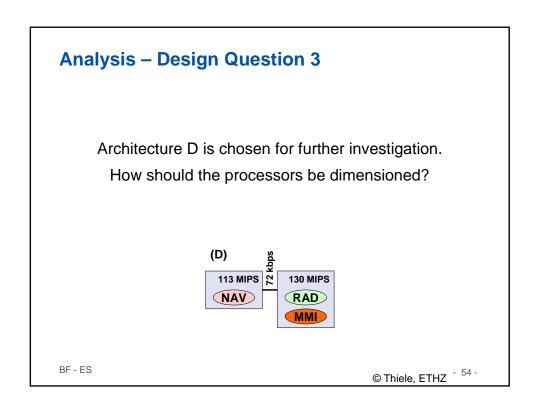
BF - ES

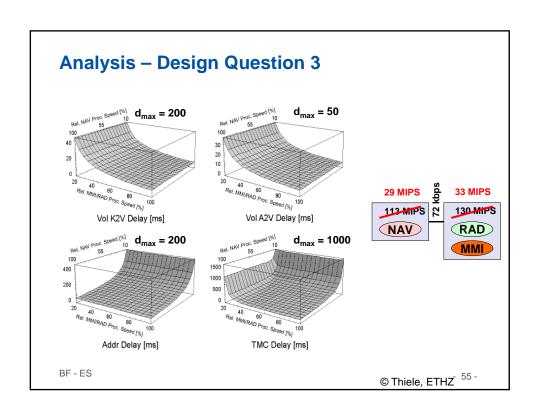
© Thiele, ETHZ - 49 -











Conclusions – Realtime Calculus

- Easy to construct models
- Evaluation speed is fast and linear to model complexity (~ 1s per evaluation)
- Needs little information to construct early models (Fits early design cycle very well)
- Results conservative (may underestimate performance)

BF - ES

© Thiele, ETHZ - 56 -