Embedded Systems

25

Failure modes of subsystems

REVIEW

- Fail-silent failures
 - subsystem either produces correct results or produces (recognizable) incorrect results or remains quiet
 - can be masked as long as at least one system survives
- Consistent failures
 - If subsystem produces incorrect results all recipients receive same (incorrect) result
 - can be masked iff the failing systems form a minority
- Byzantine failures
 - subsystem reports different results to different dependent systems
 - can be masked iff strictly less than a third of the systems fail

Dynamic hardware redundancy: standby spare arrangement

- Fault detection based on outputs (consistency check) not on voting
- Advantage: less redundant hardware
- Disadvantage: fault detection may take time \Rightarrow fault not masked

Static hardware redundancy: Multiple Stage TMR

Boeing 777

BF - ES

Reliability: f(t), F(t)

- Let *T*: time until first failure, *T* is a random variable
- Let f(t) be the density function of T

Example: Exponential distribution

 $f(t) = \lambda e^{-\lambda t}$

• F(t) = probability of the system being faulty at time t: $F(t) = \Pr(T \le t)$ $F(t) = \int_{0}^{t} f(x) dx$

Example: Exponential distribution

$$F(t) = \int_{0}^{t} \lambda e^{-\lambda x} dx = -[e^{-\lambda x}]_{0}^{t} = 1 - e^{-\lambda t}$$
BF - ES

Reliability: R(t)

Reliability R(t) = probability that the time until the first failure is larger than some time t.

$$R(t) = \Pr(T > t), t \ge 0 \qquad R(t) = \int_{t}^{\infty} f(x) dx$$
$$F(t) + R(t) = \int_{0}^{t} f(x) dx + \int_{t}^{\infty} f(x) dx = 1$$

R(t) = 1 - F(t)

Reliability block analysis

- Goal: compute reliability of a system from the reliability of its components
- Serial composition

Parallel composition

Inductive computation of reliability **REVIEW**

- Assumption: failures of the individual components are independent
- Serial composition

Parallel composition

 $1 - \prod^{N} \left(1 - R_{i}(t)\right)$

BF - ES

- 9 -

Approximation: Minimal Cuts

 A minimal cut is a minimal set of components such that their simultaneous failure causes a system failure

•
$$1 - \sum_{j \in MinimalCuts} \prod_{i \in j} [1 - R_i(t)]$$

is a lower bound for the reliability R(t) of the full system.

 Minimal cuts with a single component are called single point failures.

Approximation: Minimal Tie Sets

 A minimal tie set is a minimal set of components such that their simultaneous functioning guarantees the functioning of the system

is an upper bound for the reliability R(t) of the full system.

Fault tree Analysis (FTA)

- FTA is a top-down method of analyzing risks. Analysis starts with possible damage, tries to come up with possible scenarios that lead to that damage.
- FTA typically uses a graphical representation of possible damages, including symbols for ANDand OR-gates.
- OR-gates are used if a single event could result in a hazard.
- AND-gates are used when several events or conditions are required for that hazard to exist.

Example: Brake fluid warning lamp

Direct Analysis

$$1 - \sum_{\vec{p} \in \{0,1\}^n} (FT(\vec{p}) \cdot \prod_{i=1}^n (1 - R_i(t))^{p_i} \cdot R_i(t)^{1 - p_i})$$

where

 $\vec{p} = (p_1, ..., p_n)$ denotes the occurrence of the base events, and

 $FT(\vec{p})$ denotes the value of the top event

Problem: combinatorial explosion!

Equivalence

- Two fault trees are equivalent if the associated logical formulas are equivalent.
- E.g., $(A \lor (B \lor C) \land (C \lor (A \land B))) \equiv (C \lor (A \land B))$

Minimal cut sets

Minimal cut set = "smallest set of basic events which, in conjunction, cause the top level event to occur".

Logically: Disjunctive Normal Form (DNF) = disjunction of conjunctions of basic events.

Example:

C (single point of failure) and A \wedge B.

Mocus Algorithm (1972) "Method of Obtaining Cut Sets"

- Initialize the first element of a matrix with the top event operator
- As long as there is still an operator in the matrix:
 - If it is an AND operator, replace it with its inputs in the column
 - If it is an OR operator, replace it with its inputs in the row.
- Each column corresponds to a cut set; reduce to obtain minimal cut sets.

Nikolaos Limnios: Fault Trees

- 18 -

Binary decision trees

- Let X be a set of boolean variables and < a total order on X
- Binary decision tree (BDT) is a complete binary tree over $\langle X, \langle \rangle$
 - each leaf v is labeled with a boolean value $val(v) \in \mathbb{B}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

 $w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (Var(v) < Var(w) \lor w \text{ is a leaf})$

 \Rightarrow On each path from root to leaf, variables occur in the same order

Shannon Expansion

• Each boolean function $f : \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, \dots, x_n) = (x_i \land f[x_i := 1]) \lor (\neg x_i \land f[x_i := 0])$$

- where $f[x_i := 1]$ stands for $f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$
- and $f[x_i := 0]$ is a shorthand for $f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$
- The boolean function $f_{B}(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_{\mathsf{B}}(v) = \mathit{val}(v)$
 - otherwise:

 $f_{\mathsf{B}}(v) = (Var(v) \land f_{\mathsf{B}}(right(v))) \lor (\neg Var(v) \land f_{\mathsf{B}}(left(v)))$

•
$$f_{\mathsf{B}} = f_{\mathsf{B}}(v)$$
 where v is the root of B

Considerations on BDTs

- BDTs are not compact
 - a BDT for boolean function $f : \mathbb{B}^n \to \mathbb{B}$ has 2^n leafs
 - \Rightarrow they are as space inefficient as truth tables!
- \Rightarrow BDTs contain quite some redundancy
 - all leafs with value one (zero) could be collapsed into a single leaf
 - a similar scheme could be adopted for isomorphic subtrees
 - The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagrams

share equivalent expressions [Akers 76, Lee 59]

- Binary decision diagram (OBDD) is a directed graph over $\langle X, \langle \rangle$ with:
 - each leaf v is labeled with a boolean value $val(v) \in \{0, 1\}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

 $w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (Var(v) < Var(w) \lor w \text{ is a leaf})$

- \Rightarrow An OBDD is acyclic
 - $f_{\rm B}$ for OBDD B is obtained as for BDTs

Example $p_{1} \wedge (\neg p_{2} \vee p_{3})$

Reduced OBDDs

OBDD B over $\langle X, \langle \rangle$ is called *reduced* iff:

- 1. for each leaf v, w: $(val(v) = val(w)) \Rightarrow v = w$
 - \Rightarrow identical terminal vertices are forbidden
- 2. for each non-leaf v: $left(v) \neq right(v)$
 - \Rightarrow non-leafs may not have identical children
- 3. for each non-leaf v, w:

 $(Var(v) = Var(w) \land right(v) \cong right(w) \land left(v) \cong left(w)) \Rightarrow v = w$

 \Rightarrow vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Canonicity

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, \langle \rangle$ we have:

 $(f_{\rm B} = f_{\rm B'})$ implies B and B' are isomorphic

⇒ for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

MakeNode(var,v₁,v₂)

If $H(var, v_1, v_2) \neq empty$ then return $H(var, v_1, v_2)$; lookup in hashtable If $(v_1 = v_2)$ then return v_1

Computing AND and OR

• Shannon expansion for binary operations:

$$f \text{ op } g = (x_1 \land (f[x_1 := 1] \text{ op } g[x_1 := 1]))$$

 $\lor (\neg x_1 \land (f[x_1 := 0] \text{ op } g[x_1 := 0]))$

- A top-down evaluation scheme using the Shannon's expansion:
 - let v be the variable highest in the ordering occurring in B_f or B_g
 - split the problem into subproblems for v := 0 and v := 1, and solve recursively
 - at the leaves, apply the boolean operator op directly
 - reduce afterwards to turn the resulting OBDD into an ROBDD
- Efficiency gain is obtained by *dynamic programming*
 - the time complexity of constructing the ROBDD of $B_f op_g$ is in $\mathcal{O}(|B_f| \cdot |B_g|)$

Apply(op,v₁,v₂)

lookup in if $G(v_1, v_2) \neq$ empty then return $G(v_1, v_2)$ fi: hashtable if $(v_1 \text{ and } v_2 \text{ are terminals})$ then $res := val(v_1) \text{ op } val(v_2)$ fi; else if $(v_1 \text{ is terminal and } v_2 \text{ is nonterminal})$ then res := $MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)));$ else if $(v_1 \text{ is nonterminal and } v_2 \text{ is terminal})$ then res := $MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2));$ else if $(Var(v_1) = Var(v_2))$ then res := $MakeNode(Var(v_1), APPLY(op, left(v_1), left(v_2)), APPLY(op, right(v_1), right(v_2)));$ else if $(Var(v_1) < Var(v_2))$ then res := $MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2));$ else $(* Var(v_1) > Var(v_2)^*)$ $res := MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)));$ $G(v_1, v_2) := res;$ memorize return res result

Example

$$\begin{array}{c}
 h_{2}: \chi_{3} \\
 h_{3} \\
 h_{4} \\
 h_{3} \\
 h_{3} \\
 h_{4} \\$$

ROBDDs of Fault Trees

- Each path through the BDD from the root to a leaf node represents a disjoint combination of component failures and non-failures
- A path with a leaf node labeled with a 1 leads to system failure
- Probabilities associated with arcs on each path are either (1-R(t)) (component failure probability) for the right branch or R(t) for the left branch
- System unreliability is given by the sum of the probabilities for all paths from the root to a leaf node labeled 1

$$=) R(\xi) = (n - R_{1}(\xi)) \cdot (n - R_{2}(\xi)) + (n - R_{n}(\xi)) \cdot R_{2}(\xi) + (n - R_{n}(\xi)) \cdot R_{2}(\xi) + (n - R_{3}(\xi)) \cdot (n - R_{4}(\xi)) + R_{n}(\xi) + R_{n}(\xi) + (n - R_{3}(\xi)) \cdot (n - R_{4}(\xi)) + (n - R_{3}(\xi)) \cdot (n - R_{4}(\xi))$$

Recursive BDD evaluation

 $R(t) = R_{x}(t) * R_{I}(t) + (1-R_{x}(t)) * R_{r}(t)$ $R_{1}(t)=1$ $R_{0}(t)=0$

ROBDDs can be exponentially large

The ROBDD of $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$

has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \ldots < x_n < y_1 < \ldots < y_n$

Alternative variable ordering

The ROBDD of $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$ has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \ldots < x_n < y_n$

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine < such that the ROBDD has minimal size?
 - the optimal variable ordering problem for ROBDDs is NP-complete
 - polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)
- There are many boolean functions with large ROBDDs
 - for almost all boolean functions the minimal size is in $\Omega(\frac{2^n}{n})$
- How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the manipulations of ROBDDs

Sifting Algorithm (1993)

Dynamic variable reordering using variable swapping

- 1. Select some variable x_i
- 2. By successive swapping determine position where the ROBDD has least size
- 3. Shift to its optimal position
- 4. Go back to 1 until no more improvement.

Often only yields local optimum, but works well in practice.

Limitations of combinatorial models

 Assumption that failure probability is independent of the system state is often wrong.

Example: cold-spare redundancy

- Failure during standby is unlikely
- Failure during activation is likely

 \Rightarrow state-based models are required