Embedded Systems

BF - ES

1001 1
100

25

Failure modes of subsystems REVIEW

= Fail-silent failures

= subsystem either produces correct results
or produces (recognizable) incorrect results
or remains quiet

= can be masked as long as at least one system survives
= Consistent failures

» |f subsystem produces incorrect results all recipients receive same
(incorrect) result

= can be masked iff the failing systems form a minority
= Byzantine failures

» subsystem reports different results to different dependent systems
= can be masked iff strictly less than a third of the systems fail

BF - ES 0.

Dynamic hardware redundancy:

standby spare arrangement

Fault
Detector

H

REVIEW

N A
— Module 1

Input —

Switch

- Module 2

— Qutput

= Fault detection based on outputs (consistency check) not on voting
» Advantage: less redundant hardware
» Disadvantage: fault detection may take time = fault not masked

BF - ES

Static hardware redundancy:
Multiple Stage TMR REVIEW

Input I — Module Voter —» Module Voter — Output |
Input 2 —= Module Voter Module Voter — Output 2
Input 3 —= Module » Voter |—{ Module Voter +——» Output 3

BF - ES .

Boeing 777

THREE IDENTICAL CERANELS: LEFT SEMTER, MGaT
LAKE L]
' L= W THREE DESSMILAR WAME N EACH CHEWNEL: ORE M
SR LPL e OME OF THE
FORMLRD C2RSD B00R

BF - ES

Reliability: f(t), F(t) REVIEW

= Let T: time until first failure, T is a random variable
= |_et f(t) be the density function of T

Example: Exponential distribution 4 f(t)

A
f(t)=re™ \
t;

= F(t) = probability of the systtem being faulty at time t:
F(t) = Pr(T<t) F(t)= | f(x)dx
0

Example: Exponential distribution : 4 F(1)

t
()= [26 = fe T, =1-e
0

BF - ES 6.

Reliability: R(t) REVIEW

= Reliability R(t) = probability that the time until the
first failure is larger than some time t:

R(t)=Pr(T>t), t=0 R(t) = juxmx

jf dx+jf X)dx = 1
0

t

R(t)=1-F(t)
Example: Exponential distribution + R(t)
1
—a-\;
R(t)=e ~0.37

1/\
BF - ES 7.

Reliability block analysis REVIEW

» Goal: compute reliability of a system from the reliability
of its components

= Serial composition

Input Output

= Parallel composition

Input Output

BF - ES - 8-

Inductive computation of reliability REVIEW

= Assumption: failures of the individual components are
independent

= Serial composition

N
H Ri(t) Input | 2 ——eee— N Output
i=1
= Parallel composition |
N
-]] —Ri(t) :
Input Output

BF - ES - 9-

Approximation: Minimal Cuts REVIEW

= A minimal cut is a minimal set of components such that
their simultaneous failure causes a system failure

1= > [IR-R®]

jeMinimalCuts iej

Is a lower bound for the reliability R(t) of the full system.

= Minimal cuts with a single component are called
single point failures.

BF - ES - 10 -

Approximation: Minimal Tie Sets

= A minimal tie set is a minimal set of components such
that their simultaneous functioning guarantees the
functioning of the system

" Z H R; (t)

jeMinimalTies iej

IS an upper bound for the reliability R(t) of the full
system.

BF - ES

- 11 -

R
/ /{"
L (
-0
v
) + (4 -o1)
)=t
For
.*o,zg

Pins
r ~ AL
= o
. >E<j
O)T — /19&1
OS’ / ~ O 1
(- AN
{_
.5
-0
-\
— 0 -7

Fault tree Analysis (FTA)

= FTA is a top-down method of analyzing risks.
Analysis starts with possible damage, tries to
come up with possible scenarios that lead to
that damage.

= FTA typically uses a graphical representation of
possible damages, including symbols for AND-
and OR-gates.

= OR-gates are used if a single event could result
In a hazard.

= AND-gates are used when several events or
conditions are required for that hazard to exist.

BF - ES

Example: Brake fluid warning lamp

Warning lamp
does not

operate

Battery Fuse Float switch

Indicator lamp

Primary
lamp
failure

__-'_.a._
No voltage '
applied to lamp —_—

)

Fuse
open-circuit

Battery

supply
failure

Switch contacts

Primary
fail to close

cable or
connector
failure

Primary
fuse
failure

Primary
switch
failure

Neil Storey:

Safety-critical computer systems

- 14 -

Direct Analysis

- 2, (FT(p)- H(l Ri(1)" R (®))

pe{0,1}"

where
P=(Py P,) denotes the occurrence of the base events, and

FT(p) denotes the value of the top event

Problem: combinatorial explosion!

BF - ES

- 15-

Equivalence

= Two fault trees are equivalent if the associated
logical formulas are equivalent.

 Eg, Av(BvC)A(CVv(AAB)) = (C v (AAB))

il

AR A
©

®

©
® 060 ©

BF - ES

Minimal cut sets

Minimal cut set = “smallest set of basic events which, in
conjunction, cause the top level event to occur”.

Logically: Disjunctive Normal Form (DNF) =
disjunction of conjunctions of basic events.

Example:

C (single point of failure) and
A A B.

BF - ES

- 17 -

Mocus Algorithm (1972) , Method of Obtaining Cut Sets*

= [|nitialize the first element of a matrix with the top event
operator

= As long as there is still an operator in the matrix:
= [fitis an AND operator, replace it with its inputs in the column
= [fitis an OR operator, replace it with its inputs in the row.
= Each column corresponds to a cut set; reduce to obtain
minimal cut sets.

Bl
Be= | biy by Gj bjcsy oo by
[B2
OR \:ND
Bl
_________]_3_1- bi1 by EAIE bi+1 b
bll b1r .é’_,,_‘_f}é_: b | hi'.\i =Bk+l_ ! . ': ;
B2

BF - ES Nikolaos Limnios: Fault Trees - 18 -

Example

[3-3 = (:Qf 71 J

7 [?M 7«.«]

—

7L

—)

BF - ES

N L
1 Lt/}
¢)3

Ul
“3
P e ¢

{ T3,

a1)

n2
Al
2L
23
24

- 19-

Binary decision trees

e Let X be a set of boolean variables and < a total order on X

e Binary decision tree (BDT) is a complete binary tree over (X, <)

— each leaf v is labeled with a boolean value val(v) € B
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € { leff(v), right(v) } = (Var(v) < Var(w) Vv wis a leaf)
= On each path from root to leaf, variables occur in the same order
v
b (v) @ S, \f"i/\'k <V)

BF - ES - 20 -

Example

- 21-

BF - ES

Shannon Expansion

e Each boolean function f : B® — B can be written as:

f(xl,...,xn)m (332 A f[.ili‘Z p— ID vV (_1:7}@' A f[;];z — OD

— where f{fL’z p— 1] stands for f({L'l, ey Woealy Doy Dddey ¢ + » o fI»'n)
— and f[z; := 0] is a shorthand for f(z1,...,2i-1,0, Tj+1,. .., Tpn)

e The boolean function fz(v) represented by vertex v in BDT B is:

— for v aleaf: fg(v) = val(v)
— otherwise:

fe(v) = (Var(v) AN fe(right(v))) Vv (= Var(v) AN fs(left(v)))

e fz = [g(v) where v is the root of B

BF - ES - 22.

Considerations on BDTs

e BDTs are not compact

— a BDT for boolean function f : B" — B has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— a similar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change if the variable order changes

BF - ES - 23 -

Ordered Binary Decision Diagrams

share equivalent expressions [Akers 76, Lee 59]

¢ Binary decision diagram (OBDD) is a directed graph over (X, <) with:

— each leaf v is labeled with a boolean value val(v) € {0,1}
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € { left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)

= An OBDD is acyclic
— fg for OBDD B is obtained as for BDTs

BF - ES - 24 -

BF - ES

- 25.

Reduced OBDDs

X
OBDD B over (X, <) is called reduced iff: y \
1. for each leaf v, w: (vallv) = vallw)) = v=w \/Y ><

= identical terminal vertices are forbidden
2. for each non-leaf v: left(v) # right(v) X

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w) = 1

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

BF - ES - 26 -

Canonicity

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fgr) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

BF - ES o7

MakeNode(var,v,,v,)

If H(var,v,,v,) = empty then return H(var,v1,v2);F

If (v4=V,) then return v,

res := new node(var,v,,v,);

lookup In
hashtable

H(var,v,,v,) := res;
return res;

BF - ES

memorize
result

- 28-

Computing AND and OR

e Shannon expansion for binary operations:

fopg = (x1 A (fler :==1] op glz1 = 1]))
V (mx1 A (flz1:=0] op glz1 := 0]))

e A top-down evaluation scheme using the Shannon’s expansion:

— let v be the variable highest in the ordering occurring in B¢ orB,,

— split the problem into subproblems for v := 0 and v := 1, and solve recursively
— at the leaves, apply the boolean operator op directly

— reduce afterwards to turn the resulting OBDD into an ROBDD

e Efficiency gain is obtained by dynamic programming
— the time complexity of constructing the ROBDD of By gp ,is in O (| By || B, |)

BF - ES - 29 -

Apply(op,vy,Vv,)

if G(vy,ve) # emptly then return G (v, vg) fi;
if (v1 and vp are terminals) then res := val(vy) op val(vz) fi;
else if (v, is terminal and vy is nonterminal)

lookup In
hashtable

then res := MakeNode(Var(vy), APPLY(0Op, v, left{va)), APPLY (0P, vy, right(va)));

else if (v is nonterminal and vy is terminal)

then res := MakeNode(Var(vy), APPLY(0p, left(vy), v2), APPLY(0p, right(v1), v2));

else if (Var(vi) = Var(vy))

then res := MakeNode(Var(vy), APPLY(0p, left(vy), left(va)), APPLY(0p, right(v,), right(va)));

else if (Var(vy) < Var(vy))

then res := MakeNode(Var(vy), APPLY(0p, left(v1), vo), APPLY(0p, right(vy), v2));

else

(* Var(vy) > Var(vg) ¥)

res := MakeNode(Var(vy), APPLY(0Op, v1, left(va)), APPLY(Op, vy, right(va)));

G(vy, v2) 1= res;
return res

BF - ES

memorize
result

- 30 -

WA Ka Wat K,
Example / -
‘/\L" X;; /\ byt x/;
7\ SoTXe ™
o N o - \\/l
' Ar)({("‘] (/\,V\IUV/\A)) \/ \J
— (A, Ny Ma Ralé
A‘W““} FE y) Y -\
—> Aerky (ap e e ;% &
=) Ferty (ay 2 0) A
—y hpphey (1) A) = K&\
—) ,Acﬂ‘j"a (/\I Wi lMg) ": X Aw(,] (,\,4,0»)7
— AVMQA,CD, W;)?O Lo \
— /"T’!’La Ca A V"Q) \o' /

—) /LVYVLB (/\/ /11 1\ A)

BF - ES - 31-

ROBDDs of Fault Trees

= Each path through the BDD from the root to a leaf node
represents a disjoint combination of component failures
and non-failures

» A path with a leaf node labeled with a 1 leads to system
failure

* Probabilities associated with arcs on each path are
either (1-R(t)) (component failure probability) for the right
branch or R(t) for the left branch

= System unreliability is given by the sum of the
probabilities for all paths from the root to a leaf node
labeled 1

BF - ES - 32 -

Example /i’\>\\?L
oy o O
O

BF - ES

/

=) R\ =
(- 2LE)) (-0, k)
+ (A-R.CO) R, CX)
- (A-Ryc8) (ﬂ'(?c(((—))

+ R, e
(A L) (/lf;z%(e))

- 33 -

Recursive BDD evaluation

RQ
R <::ji> <::::> R,

R(t) = R,(t) " Ry(t) + (1-R,(t)) * R((t)

1
0

R4(t)
Ro(t)

BF - ES

- 34-

ROBDDs can be exponentially large

The ROBDD of fuu(Z,¥) = (z1 > y1) A ... A (Tn & Yn)

has 3-2" — 1 verticesunderordering z; < ... <z, <11 < ... < Yn

BF - ES - 35-

Alternative variable ordering

BF - ES

1

The ROBDD of fuu(Z,7) = (z1 <> y1) A ... A (%, & yn)

has 3-n + 2 vertices under ordering z1 < y1 < ... < z, < Yn

- 36 -

Optimal variable ordering

e The size of ROBDDs is dependent on the variable ordering

e s it possible to determine < such that the ROBDD has minimal size?

— the optimal variable ordering problem for ROBDDs is NP-complete
— polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)

e There are many boolean functions with large ROBDDs

. (e
— for almost all boolean functions the minimal size is in Q(2-)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the manipulations of ROBDDs

BF - ES - 37 -

Sifting Algorithm (1993)

Dynamic variable reordering using variable swapping

1. Select some variable x;

2. By successive swapping determine position where the
ROBDD has least size

3. Shift to its optimal position
4. Go back to 1 until no more improvement.

Often only yields local optimum, but works well in practice.

BF - ES - 38-

Limitations of combinatorial models

= Assumption that failure probability is independent of the
system state is often wrong.

Example: cold-spare redundancy
= Failure during standby is unlikely

= Failure during activation is likely

— state-based models are required

BF - ES - 39-

