

Failure modes of subsystems

REVIEW

- Fail-silent failures
 - subsystem either produces correct results or produces (recognizable) incorrect results or remains quiet
 - can be masked as long as at least one system survives
- Consistent failures
 - If subsystem produces incorrect results all recipients receive same (incorrect) result
 - can be masked iff the failing systems form a minority
- Byzantine failures
 - subsystem reports different results to different dependent systems
 - can be masked iff strictly less than a third of the systems fail

BF - ES - 2 -

Dynamic hardware redundancy: standby spare arrangement

REVIEW

- Fault detection based on outputs (consistency check) not on voting
- Advantage: less redundant hardware
- Disadvantage: fault detection may take time ⇒ fault not masked

BF-ES - 3-

Static hardware redundancy: Multiple Stage TMR

REVIEW

BF - ES

- 4-

Reliability: f(t), F(t)

REVIEW

- Let *T*: time until first failure, *T* is a random variable
- Let *f*(*t*) be the density function of *T*

Example: Exponential distribution

 $f(t) = \lambda e^{-\lambda t}$

• F(t) = probability of the system being faulty at time t.

$$F(t) = \Pr(T \le t)$$
 $F(t) = \int_{0}^{t} f(x) dx$

Example: Exponential distribution

•

Reliability: R(t)

REVIEW

■ **Reliability** R(t) = probability that the time until the first failure is larger than some time t.

$$R(t) = \Pr(T > t), \ t \ge 0 \qquad R(t) = \int_{t}^{\infty} f(x) dx$$
$$F(t) + R(t) = \int_{0}^{t} f(x) dx + \int_{t}^{\infty} f(x) dx = 1$$

$$R(t) = 1 - F(t)$$

Example: Exponential distribution

$$R(t)=e^{-\lambda t}$$

BF - ES

Reliability block analysis

REVIEW

- Goal: compute reliability of a system from the reliability of its components
- Serial composition

Parallel composition

BF - ES

Inductive computation of reliability

REVIEW

- Assumption: failures of the individual components are independent
- Serial composition

Parallel composition

$$1 - \prod^{N} \left(1 - R_{i}(t)\right)$$

BF - ES

Approximation: Minimal Cuts

REVIEW

 A minimal cut is a minimal set of components such that their simultaneous failure causes a system failure

•
$$1 - \sum_{j \in MinimalCuts} \prod_{i \in j} [1 - R_i(t)]$$

is a lower bound for the reliability R(t) of the full system.

 Minimal cuts with a single component are called single point failures.

BF - ES

- 10 -

Approximation: Minimal Tie Sets

- A minimal tie set is a minimal set of components such that their simultaneous functioning guarantees the functioning of the system
- $\sum_{j \in Minimal Ties} \prod_{i \in j} R_i(t)$

is an upper bound for the reliability R(t) of the full system.

BF - ES - 11 -

Fault tree Analysis (FTA)

 FTA is a top-down method of analyzing risks. Analysis starts with possible damage, tries to come up with possible scenarios that lead to that damage.

- FTA typically uses a graphical representation of possible damages, including symbols for ANDand OR-gates.
- OR-gates are used if a single event could result in a hazard.
- AND-gates are used when several events or conditions are required for that hazard to exist.

BF - ES - 13 -

Direct Analysis

$$1 - \sum_{\vec{p} \in \{0,1\}^n} (FT(\vec{p}) \cdot \prod_{i=1}^n (1 - R_i(t))^{p_i} \cdot R_i(t)^{1 - p_i})$$

where

 $\vec{p} = (p_1,...,p_n)$ denotes the occurrence of the base events, and

 $FT(\vec{p})$ denotes the value of the top event

Problem: combinatorial explosion!

BF - ES - 15 -

Equivalence

- Two fault trees are equivalent if the associated logical formulas are equivalent.
- E.g., $(A \lor (B \lor C) \land (C \lor (A \land B))) \equiv (C \lor (A \land B))$

BF - ES

- 16 -

Minimal cut sets

Minimal cut set = "smallest set of basic events which, in conjunction, cause the top level event to occur".

Logically: Disjunctive Normal Form (DNF) = disjunction of conjunctions of basic events.

Example:

C (single point of failure) and $A \wedge B$.

BF - ES

- 17 -

Mocus Algorithm (1972) "Method of Obtaining Cut Sets"

- Initialize the first element of a matrix with the top event operator
- As long as there is still an operator in the matrix:
 - If it is an AND operator, replace it with its inputs in the column
 - If it is an OR operator, replace it with its inputs in the row.

Each column corresponds to a cut set; reduce to obtain

minimal cut sets.

BF - ES

Nikolaos Limnios: Fault Trees

9

Example
$$\begin{bmatrix} 3 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-) \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$-)$$

Binary decision trees

- Let X be a set of boolean variables and < a total order on X
- Binary decision tree (BDT) is a complete binary tree over $\langle X, < \rangle$
 - each leaf v is labeled with a boolean value $\mathit{val}(v) \in \mathbb{B}$
 - non-leaf v is labeled by a boolean variable $\mathit{Var}(v) \in X$
 - such that for each non-leaf v and vertex w:

$$w \in \{ \textit{left}(v), \textit{right}(v) \} \Rightarrow (\textit{Var}(v) < \textit{Var}(w) \lor w \text{ is a leaf})$$

⇒ On each path from root to leaf, variables occur in the same order

BF - ES - 20 -

Shannon Expansion

• Each boolean function $f: \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, ..., x_n) = (x_i \land f[x_i := 1]) \lor (\neg x_i \land f[x_i := 0])$$

- where $f[x_i:=1]$ stands for $f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n)$ and $f[x_i:=0]$ is a shorthand for $f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)$
- The boolean function $f_B(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_B(v) = val(v)$
 - otherwise:

$$f_{\mathsf{B}}(v) = (\mathit{Var}(v) \ \land \ f_{\mathsf{B}}(\mathit{right}(v))) \ \lor \ (\neg \mathit{Var}(v) \ \land \ f_{\mathsf{B}}(\mathit{left}(v)))$$

• $f_{\mathsf{B}} = f_{\mathsf{B}}(v)$ where v is the root of B

BF - ES - 22 -

Considerations on BDTs

- BDTs are not compact
 - a BDT for boolean function $f: \mathbb{B}^n \to \mathbb{B}$ has 2^n leafs
- ⇒ they are as space inefficient as truth tables!
- ⇒ BDTs contain quite some redundancy
 - all leafs with value one (zero) could be collapsed into a single leaf
 - a similar scheme could be adopted for isomorphic subtrees
- The size of a BDT does not change if the variable order changes

BF - ES - 23 -

Ordered Binary Decision Diagrams

share equivalent expressions [Akers 76, Lee 59]

- Binary decision diagram (OBDD) is a directed graph over $\langle X, < \rangle$ with:
 - each leaf v is labeled with a boolean value $\mathit{val}(v) \in \{0, 1\}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

```
w \in \{ \textit{left}(v), \textit{right}(v) \} \Rightarrow (\textit{Var}(v) < \textit{Var}(w) \lor w \text{ is a leaf})
```

- ⇒ An OBDD is acyclic
 - $f_{\rm B}$ for OBDD B is obtained as for BDTs

BF - ES - 24 -

Canonicity [Fortune, Hopcroft & Schmidt, 1978] For ROBDDs B and B' over $\langle X, < \rangle$ we have: $(f_{\rm B} = f_{\rm B'})$ implies B and B' are isomorphic \Rightarrow for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

$\label{eq:makeNode} \begin{aligned} & \text{MakeNode(var,v}_1,v_2) \\ & \text{If } H(\text{var,v}_1,v_2) \neq \text{empty then return } H(\text{var,v}_1,v_2); \\ & \text{If } (v_1\text{=}v_2) \text{ then return } v_1 \\ & \text{res := new node(var,v}_1,v_2); \\ & H(\text{var,v}_1,v_2) := \text{res}; \\ & \text{return res}; \end{aligned} \qquad \qquad \begin{aligned} & \text{memorize} \\ & \text{result} \end{aligned}$

Computing AND and OR

· Shannon expansion for binary operations:

$$f \ \textit{op} \ \textit{g} = (x_1 \land (f[x_1 := 1] \ \textit{op} \ \textit{g}[x_1 := 1]))$$

 $\lor (\neg x_1 \land (f[x_1 := 0] \ \textit{op} \ \textit{g}[x_1 := 0]))$

- A top-down evaluation scheme using the Shannon's expansion:
 - let v be the variable highest in the ordering occurring in B_f or B_q
 - split the problem into subproblems for v := 0 and v := 1, and solve recursively
 - at the leaves, apply the boolean operator op directly
 - reduce afterwards to turn the resulting OBDD into an ROBDD
- Efficiency gain is obtained by dynamic programming
 - the time complexity of constructing the ROBDD of B_f op g is in $\mathcal{O}\left(\mid B_f \mid \cdot \mid B_g \mid\right)$

BF - ES - 29 -

Apply(op,v₁,v₂)

```
lookup in
\text{if } G(\textcolor{red}{v_1}, \textcolor{blue}{v_2}) \neq \text{empty then return } G(\textcolor{red}{v_1}, \textcolor{blue}{v_2}) \text{ fi}; \\
                                                                                                                                                              hashtable
if (v_1 \text{ and } v_2 \text{ are terminals}) then \textit{res} := \textit{val}(v_1) \textit{ op val}(v_2) fi;
\textbf{else if} \ \ (v_1 \ \text{is terminal and} \ v_2 \ \text{is nonterminal})
         \mathsf{then}\; \mathit{res} := \mathit{MakeNode}(\mathit{Var}(v_2), \mathsf{APPLY}(\mathit{op}, \textcolor{red}{v_1}, \mathit{left}(v_2)), \mathsf{APPLY}(\mathit{op}, \textcolor{red}{v_1}, \mathit{right}(v_2)));
else if (v_1) is nonterminal and v_2 is terminal)
         \textbf{then res} := \textit{MakeNode}(\textit{Var}(v_1), \textit{APPLY}(\textit{op}, \textit{left}(v_1), v_2), \textit{APPLY}(\textit{op}, \textit{right}(v_1), v_2));
\textit{else if } (\textit{Var}(\textcolor{red}{v_1}) = \textit{Var}(\textcolor{red}{v_2}))
         \textbf{then res} := \textit{MakeNode}(\textit{Var}(\textcolor{red}{v_1}), \textit{APPLY}(\textit{op}, \textit{left}(\textcolor{red}{v_1}), \textit{left}(\textcolor{red}{v_2})), \textit{APPLY}(\textit{op}, \textit{right}(\textcolor{red}{v_1}), \textit{right}(\textcolor{red}{v_2})));
else if (Var(v_1) < Var(v_2))
         then res := MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2));
                                                                                                                                                      (* Var(v_1) > Var(v_2) *)
         \textit{res} := \textit{MakeNode}(\textit{Var}(v_2), \mathsf{APPLY}(\textit{op}, \textcolor{red}{v_1}, \textit{left}(v_2)), \mathsf{APPLY}(\textit{op}, \textcolor{red}{v_1}, \textit{right}(v_2)));
G(\mathbf{v_1}, \mathbf{v_2}) := \mathit{res};
                                                                                                                                                                memorize
return res
                                                                                                                                                                       result
```

BF - ES - 30 -

ROBDDs of Fault Trees

- Each path through the BDD from the root to a leaf node represents a disjoint combination of component failures and non-failures
- A path with a leaf node labeled with a 1 leads to system failure
- Probabilities associated with arcs on each path are either (1-R(t)) (component failure probability) for the right branch or R(t) for the left branch
- System unreliability is given by the sum of the probabilities for all paths from the root to a leaf node labeled 1

BF - ES - 32 -

Recursive BDD evaluation

BF - ES

- 34 -

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine < such that the ROBDD has minimal size?
 - the optimal variable ordering problem for ROBDDs is NP-complete
 - polynomial reduction from the 3SAT problem

(Bollig & Wegener, 1996)

- · There are many boolean functions with large ROBDDs
 - for almost all boolean functions the minimal size is in $\Omega(\frac{2^n}{n})$
- · How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the manipulations of ROBDDs

BF - ES - 37 -

Sifting Algorithm (1993)

Dynamic variable reordering using variable swapping

- 1. Select some variable x_i
- 2. By successive swapping determine position where the ROBDD has least size
- 3. Shift to its optimal position
- 4. Go back to 1 until no more improvement.

Often only yields local optimum, but works well in practice.

BF - ES - 38 -

Limitations of combinatorial models

 Assumption that failure probability is independent of the system state is often wrong.

Example: cold-spare redundancy

- Failure during standby is unlikely
- Failure during activation is likely
- \Rightarrow state-based models are required

BF - ES - 39 -