Embedded Systems 25

BF - ES 1.

Failure modes of subsystems REVIEW

= Fail-silent failures

= subsystem either produces correct results
or produces (recognizable) incorrect results
or remains quiet

= can be masked as long as at least one system survives
= Consistent failures

= |f subsystem produces incorrect results all recipients receive same
(incorrect) result

= can be masked iff the failing systems form a minority

= Byzantine failures
= subsystem reports different results to different dependent systems
= can be masked iff strictly less than a third of the systems fail

BF - ES _2.

Dynamic hardware redundancy: REVIEW
standby spare arrangement

Fault

Detector
I

Module 1

Input — Switch |——= Qutput

Module 2

» Fault detection based on outputs (consistency check) not on voting
= Advantage: less redundant hardware
= Disadvantage: fault detection may take time = fault not masked

BF -ES -3

Static hardware redundancy:
Multiple Stage TMR REVIEW

Input 1 Module Vater I I Module Output 1

Input 2 Vater H Module
Input 3 Module ¥ = Voter H Module

Output 2

Output 3

BF - ES -4

Boeing 777

Reliability: f(t), F(t) REVIEW

= Let T: time until first failure, T is a random variable
= Let f(t) be the density function of T

Example: Exponential distribution f(t)

f(ty=ret

v

= F(t) = probability of the systtem being faulty at time t:

F(t) = Pr(T<t) F(t)= [f(x)dx
0
Example: Exponential distribution F(t)

t
F(t)=[1e™dx =—[e], =1-e™"
0

t
BF - ES

Reliability: R(t) REVIEW

= Reliability R(t) = probability that the time until the
first failure is larger than some time t:

0

R()=Pr(T>t), =0 R(t)=[f(x)dx

t

F(t)+R(t) = uxmx+7uxmx=1

R(t)=1-F(t)
Example: Exponential distribution R(t)
1

R(t)=e™t

® ~0.37 t

1/

BF -ES 7.
Reliability block analysis REVIEW

= Goal: compute reliability of a system from the reliability
of its components

= Serial composition

Input 1 2 sss — N Output

= Parallel composition

BF -ES

Inductive computation of reliability REVIEW

= Assumption: failures of the individual components are
independent

= Serial composition
N

]___[Ri[t] Input I 2 esse — N Output

i=1
= Parallel composition

™N
1-JJO0—Ri(1)
Input Qutput

BF -ES -9
Approximation: Minimal Cuts REVIEW

= A minimal cut is a minimal set of components such that
their simultaneous failure causes a system failure

- 1- > JIL-rR@I

jeMinimalCuts iej

is a lower bound for the reliability R(t) of the full system.

= Minimal cuts with a single component are called
single point failures.

BF -ES - 10-

Approximation: Minimal Tie Sets

= A minimal tie set is a minimal set of components such
that their simultaneous functioning guarantees the
functioning of the system

- Z HRi(t)

jeMinimalTies iej

is an upper bound for the reliability R(t) of the full
system.

BF - ES - 11 -

Example : ._E j/
PRl e
= g

Ro, A= [(t-0x) + (A-007) = a-Cosion

— OI'L'Y-
sk B
—
RE o7 - O&5 F o.§ -0.U = 0-7
L
- — - (n-o.T ><0_ 0,10
s Cemk 0T (A) ;O&Tg

Fault tree Analysis (FTA)

= FTA is a top-down method of analyzing risks.
Analysis starts with possible damage, tries to
come up with possible scenarios that lead to
that damage.

= FTA typically uses a graphical representation of
possible damages, including symbols for AND-
and OR-gates.

= OR-gates are used if a single event could result
in a hazard.

= AND-gates are used when several events or
conditions are required for that hazard to exist.

BF -ES - 13-

Example: Brake fluid warning lamp

Warning lamp

Battery Fuse Float switch Indicator lamp

Fuse Switch contacts Primary
Battery open-circuit fail to close cabie or

Neil Storey:
Safety-critical computer systems
- 14 -

Direct Analysis

1- Z (FT(E)'ﬁ(l—Ri(t))pi.Ri(t)l—pi)

pe{0,13"
where
p=(p.-» P,) denotes the occurrence of the base events, and

FT(P) denotes the value of the top event

Problem: combinatorial explosion!

BF -ES - 15-

Equivalence

= Two fault trees are equivalent if the associated
logical formulas are equivalent.

= Eg, (AV(BVC)A(CV(AAB)) = (Cv (A AB))

BF -ES - 16 -

Minimal cut sets

Minimal cut set = “smallest set of basic events which, in
conjunction, cause the top level event to occur”.

Logically: Disjunctive Normal Form (DNF) =
disjunction of conjunctions of basic events.

Example:
C (single point of failure) and
A AB.

BF - ES 17 -

Mocus Algorithm (1972) ,Method of Obtaining Cut Sets*

= |nitialize the first element of a matrix with the top event
operator
» As long as there is still an operator in the matrix:
= [fitis an AND operator, replace it with its inputs in the column
= Ifitis an OR operator, replace it with its inputs in the row.
= Each column corresponds to a cut set; reduce to obtain
minimal cut sets.

BF -ES Nikolaos Limnios: Fault Trees - 18-

Example

[3a) —> Lgr 9] %)
[3
? [M ﬁ] &
av
., —n L a2
L" yig ny
22
148 T g(f.
no 3 - — k)
—) n Yo kY
DR e 4

BF -ES

- 19-

Binary decision trees

e Let X be a set of boolean variables and < a total order on X

e Binary decision tree (BDT) is a complete binary tree over (X, <)

— each leaf v is labeled with a boolean value val(v) € B
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:
w € { lefl(v), right(v) } = (Var(v) < Varfw) Vv wis aleaf)

= On each path from root to leaf, variables occur in the same order
v
Lt Cv) C) 'S \f‘ﬁ/u (V)

BF -ES - 20-

10

BDT— - T/\ a ('_7(’1,

' 0y £ (:
3 , .
(r /\ /I \ / \
o / [
o €) 0 0 4 /1 o
BF - ES

\/'93)

- 21-

Shannon Expansion

e Each boolean function f : B* — B can be written as:

FlEyeagn) =12 A il =) V {3 N =100

— where f[z; := 1] stands for f(zy,....zi—1, L 2ic, ..., 2y)

— and f[x; := 0] is a shorthand for f(z,....2zi—1, 0, zis1, .

sy n)

e The boolean function fg(v) represented by vertex v in BDT B is:

- for v aleaf: fg(v) = val(v)
- otherwise:

fa(v) = (Var(v) A fa(right(v))) v (- Var(v) A fa(left(v)))

e [z = fa(v) where v is the root of B

BF -ES

- 22 -

11

Considerations on BDTs

¢ BDTs are not compact

n

— a BDT for boolean function f : B® — B has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— asimilar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change if the variable order changes

BF -ES

- 23-

Ordered Binary Decision Diagrams

share equivalent expressions [Akers 76, Lee 59]

e Binary decision diagram (OBDD) is a directed graph over (X, <) with:

— each leaf v is labeled with a boolean value val(v) € {0,1}
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € { left(v), right{iv) } = (Var(v) < Var(w) v wis aleaf)

= An OBDD is acyclic
— fs for OBDD B is obtained as for BDTs

BF - ES 24 -

12

BF -ES

- 25-

Reduced OBDDs

OBDD B over (X, <) is called reduced iff:

'K
\
1. for each leaf v, w: (val(v) = vallw)) = v=w / \/Y ><

o

= identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v) X

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w)

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

BF -ES

= v=w

- 26-

13

Canonicity

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fgr) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

BF - ES - 27-

MakeNode(var,v,,Vv,)

If H(var,v,,v,) # empty then return H(var,v1,vz);” lookup in

hashtable
If (vi=v,) then return v,
res := new node(var,v,,V,);
H(var,v,,v,) = res; memorize
return res; result
BF - ES - 28-

14

Computing AND and OR

e Shannon expansion for binary operations:

fopg = (x1 A (flz1:=1] op g[z1 = 1]))
V (=1 A (f[z1:=0] op g[z1 :=0]))

¢ A top-down evaluation scheme using the Shannon’s expansion:

let v be the variable highest in the ordering occurring in B orB,,

split the problem into subproblems for v := 0 and v := 1, and solve recursively
at the leaves, apply the boolean operator op directly

reduce afterwards to turn the resulting OBDD into an ROBDD

e Efficiency gain is obtained by dynamic programming
- the time complexity of constructing the ROBDD of By gp , isin O (| By || B |)

BF -ES - 29-

Apply(op,vy,vy)

if G(vy,ve) # empty then return G (v, vo) fi; |OOkUp in
if (v and vy are terminals) then res := val(v,) op val(vs) fi; hashtable

else if (v is terminal and vy is nonterminal)

then res := MakeNode(Var{vg), APPLY(0p, vy, left(va)). APPLY(0Op, vy, right(va)));
else if (v is nonterminal and v is terminal)

then res := MakeNode(Var(vy), APPLY(0p, left(v1), va), APPLY(OPp, right(vy), v2));
elseif (Var(vy) = Var(va))

then res := MakeNode(\Var(v,), APPLY(0p, left(v)), left(vy)). APPLY(ap, right(vy). right{va)));

elseif (Var(v,) < Var(vg))
then res := MakeNode(Var(v,), APPLY(0p, left(vy), va), APPLY (0p, right(v,), va)):

else (* Var(vy) > Var(vg) *)
res := MukeNode(Var(ve), APPLY(0p, v, left(vg)), APPLY(0p, vy, right(va)));
G(v1, v2) := res; memorize
return res
result
BF -ES - 30-

15

Mat ¥a WA '}(z_
Example / ;
h;,‘l }(3 /\ sz) xlrl _
7\ / X
o - \,1

o

wms

‘AN'(‘\(AIV\'HU’\") L
Ay (0, g 00) &
N /\ﬂ,,b?(/\,v\,_,wL) v ; \X
")A’\’(’L}(")@/Q {~ X . &

— A’(’(‘x“'\ (A) /\, lMS‘) p——} K$’

— Atwfda(/\, Wy V’\s) “-‘\ Ay (a4 o)
—y Aty (o, 0 wy) -0 1 Xf\ e
— A—pr"-a (n,/ll“'\;)) \O A

—) A/‘)YVL‘-() (/\//l/"’\/l)

BF -ES - 31-

ROBDDs of Fault Trees

= Each path through the BDD from the root to a leaf node
represents a disjoint combination of component failures
and non-failures

= A path with a leaf node labeled with a 1 leads to system
failure

» Probabilities associated with arcs on each path are
either (1-R(t)) (component failure probability) for the right
branch or R(t) for the left branch

= System unreliability is given by the sum of the
probabilities for all paths from the root to a leaf node
labeled 1

BF -ES - 32-

16

Example / \ o) R(€\ =

(- RLE)) (- , ()
b (AR) R, LY
- (A=Rye4) (4’024(((-9

+ R, &)
. (a- (lz(é\)- (/lfkgf(e))

BF - ES - 33-

Recursive BDD evaluation

R

O Or

R(t) = Re(t) * Ry(t) + (1-R(1)) * Ri(t)

R4(t)=1
Ro(t)=0

BF - ES - 34-

17

ROBDDs can be exponentially large

The ROBDD of fﬂ'uh{y' ?}) = (J'.l Ans '.i)'l) Ao A (;?'.n = yn)

has 3-2" — 1 verticesunderorderingz; < ... <z, <1y < ... < Yn

BF - ES - 35-

Alternative variable ordering

The ROBDD of fuut(Z,7) = (21 © ¥1) A ..o A (Tn © yn)

has 3-n + 2 vertices underordering =y < y1 < ... < & < Yn

BF - ES - 36-

18

Optimal variable ordering

e The size of ROBDDs is dependent on the variable ordering

e Is it possible to determine < such that the ROBDD has minimal size?

— the optimal variable ordering problem for ROBDDs is NP-complete
— polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)

e There are many boolean functions with large ROBDDs

— for almost all boolean functions the minimal size is in (%)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the manipulations of ROBDDs

BF -ES - 37-

Sifting Algorithm (1993)

Dynamic variable reordering using variable swapping

1. Select some variable x;

2. By successive swapping determine position where the
ROBDD has least size

3. Shift to its optimal position
4. Go back to 1 until no more improvement.

Often only yields local optimum, but works well in practice.

BF - ES - 38-

Limitations of combinatorial models

= Assumption that failure probability is independent of the
system state is often wrong.

Example: cold-spare redundancy
» Failure during standby is unlikely

» Failure during activation is likely

= state-based models are required

BF - ES - 39-

20

