
- 1 -BF - ES

Embedded Systems 26

- 2 -BF - ES

Testing: Scope

Testing includes
the application of test patterns to the inputs of the device
under test (DUT) and
the observation of the results.

More precisely, testing requires the following steps:
1. test pattern generation,
2. test pattern application,
3. response observation, and
4. result comparison (okay, not okay, inconclusive).

- 3 -BF - ES

Test pattern generation

Test pattern generation typically
considers certain fault models and
generates patterns that enable a distinction between the
faulty and the fault-free case.
Coverage criteria shed light on the likeliness of instances
of the fault type slipping through

- 4 -BF - ES

Hardware Fault models

stuck-at fault model
(net permanently
connected to ground
or Vdd)
stuck-open faults:
for CMOS, open
transistors can
behave like memories
delay faults: circuit is
functionally correct,
but the delay is not.

Hardware fault models include:

www.cedcc.psu.edu/ee497f

/rassp_43/sld022.htm

- 5 -BF - ES

Simple example

Could we check for a stuck at one error at a (s-a-1(a)) ?
Solution (just guessing):

f='1' if there is an error
⇒ a='0', b='0' in order to have f='0' if there is no error
g='1' in order to propagate error
c='1' in order to have g='1' (or set d='1')
e='1' in order to propagate error
i='1' if there is no error & i='0' if there is

/1

0
/10

11
1

1/0 1/0

0
errorno error

- 6 -BF - ES

Need to Deal With Two Copies of the Circuit

X
0

1

Good circuit

0

X
0

1
sa1

Faulty circuit

1

X
0

1
sa1

Circuit

0/1

Alternatively, use a multi-valued
algebra of signal values for both

good and faulty circuits.

S
am

e
in

pu
t

D
iff

er
en

t o
ut

pu
ts

X

X X

Copyright Agrawal & Bushnell

- 7 -BF - ES

Symbol

D
D
0
1
X

Alternative
Representation

1/0
0/1
0/0
1/1
X/X

Faulty
Circuit

0
1
0
1
X

Fault-free
circuit

1
0
0
1
X

Roth‘s 5-valued algebra (1966)

Copyright Agrawal & Bushnell

- 8 -BF - ES

Function of NAND Gate

c

D

X

1

0

Input a

DX10

D1XD1

1X1

XXXX1

DX01

11111

D

D

D

D

D

a

b
c

D
1/0

0/1

D

1

In
pu

t b

Copyright Agrawal & Bushnell

- 9 -BF - ES

D-Algorithm

Use D-algebra
Activate fault

• Place a D or D at fault site
• Do justification, forward implication and consistency check

for all signals
Repeatedly propagate D-chain toward POs through a gate

• Do justification, forward implication and consistency check
for all signals

Backtrack if
• A conflict occurs, or
• D-frontier becomes empty

Stop when
• D or D at a PO, i.e., test found, or
• If search exhausted without a test, then no test possible

Copyright Agrawal & Bushnell

- 10 -BF - ES

Definitions

Justification: Changing inputs of a gate if the present
input values do not justify the output value.
Forward implication: Determination of the gate output
value, which is X, according to the input values.
Consistency check: Verifying that the gate output is
justifiable from the values of inputs, which may have
changed since the output was determined.
D-frontier: Set of gates whose inputs have a D or D,
and the output is X.

Copyright Agrawal & Bushnell

- 11 -BF - ES

Definition: Singular Cover

A singular cover defines the least restrictive inputs for a
deterministic output value.
Used for:

• Line justification: determine gate inputs for specified output.
• Forward implication: determine gate output.

a

b
c

011SC-3

10XSC-2

1X0SC-1

cbaSingular
covers

X

X
0

Examples: XX0 ∩ 110 = 110
0XX ∩ 0X1 = 0X1

Copyright Agrawal & Bushnell

- 12 -BF - ES

D-Intersection

DDD

DX10X

111

000

DX10∩

D

D

D

D

Undefined
State

(conflict)

D

Copyright Agrawal & Bushnell

- 13 -BF - ES

Definition: D-Cubes

D-cubes are
singular covers with
five-valued signals
Used for D-drive
(propagation of D
through gates) and
forward implication.

1DD-10

1DD-9

1D0D-8

10DD-7

DD-6

DDD-5

D1D-4

D1D-3

D1D-2

1DD-1

cbaD-cube

D
D

DD

D
D

D

D

D

a

b
c

X

D
X

Examples: XDX ∩ 1DD = 1DD
0DX ∩ 0D1 = 0D1
DDX ∩ DD1 = DD1

Copyright Agrawal & Bushnell

- 14 -BF - ES

Example: Test for c sa0

a
b

a2
a1

b1

b2

c1
c

c2

d

e

f

- 15 -BF - ES

- 16 -BF - ES

Complexity of D-Algorithm

Signal values on all lines (PIs and internal lines) are
manipulated using 5-valued algebra.
Worst-case combinations of signals that may be tried
is 5#lines

• For XOR circuit, 512 = 244,140,625.

Podem: A reduced-complexity ATPG algorithm
• Recognizes that internal signals depend on PIs.
• Only PIs are independent variables and should be

manipulated.
• Because faults are internal, a PI can assume only 3

values (0, 1, X).
• Worst-case combinations = 3#PI; for XOR circuit, 32 = 8.

- 17 -BF - ES

Fault coverage

A certain set of test patterns will not always detect all faults
that are possible within a fault model

model fault the to due possible faults of Number
set pattern test given a for faults detectable of Number

=coverage

For actual designs, the coverage should be at least in the
order of 98 to 99%
For actual designs, the coverage should be at least in the
order of 98 to 99%

- 18 -BF - ES

Fault simulation

Coverage can be computed with fault simulation:
∀ faults ∈ fault model: check if distinction between faulty and
the fault-free case can be made:
Simulate fault-free system;
∀ faults ∈ fault model DO
∀ test patterns DO
Simulate faulty system;
Can the fault be observed for ≥1 pattern?

Faults are called redundant if they do not affect the
observable behavior of the system,

Fault simulation checks whether mechanisms for improving
fault tolerance actually help.

- 19 -BF - ES

Finding Other Detected Faults by the Generated Test

Determine good circuit signal values.

For each fault
• Place a D or D at the fault site
• Perform forward implications
• Fault is detected if any PO assumes a D or D

value

- 20 -BF - ES

Example: Detect c2 sa0 with Test(0,1)?

a
b

a2
a1

b1

b2

c1
c

c2

d

e

f

- 21 -BF - ES

Example: Detect c1 sa0 with Test(0,1)?

a
b

a2
a1

b1

b2

c1
c

c2

d

e

f

- 22 -BF - ES

Test for c1 sa0

a
b

a2
a1

b1

b2

c1
c

c2

d

e

f

- 23 -BF - ES

An ATPG System

Random pattern
generator

Fault simulator

Fault
coverage
improved?

Random
patterns

effective?

Save
patterns

Deterministic
ATPG

(e.g., D-alg.)yes no

yes

no

Compact
vectors

Coverage
Sufficient?

noyes

Copyright Agrawal & Bushnell

- 24 -BF - ES

Typically gets
tests for 60-80%
of faults
Then switch to
D-algorithm or
other ATPG
method

Random Pattern Generation

Copyright Agrawal & Bushnell

- 25 -BF - ES

Vector Compaction

Objective: Reduce the size of test vector set
without reducing fault coverage.
Simulate faults with test vectors in reverse order of
generation

• ATPG patterns go first
• Randomly-generated patterns go last (because they may

have less coverage)
• When coverage reaches 100% (or the original maximum

value), drop remaining patterns

Significantly shortens test sequence ⇒ testing cost
reduction.

Copyright Agrawal & Bushnell

- 26 -BF - ES

Static and Dynamic Compaction of Sequences

Static compaction
• ATPG should leave unassigned inputs as X
• Two patterns compatible – if no conflicting values for any PI

• Combine two tests ta and tb into one test tab = ta ∩ tb using
intersection

• Detects union of faults detected by ta and tb
Dynamic compaction

• Process every partially-done ATPG vector immediately
• Assign 0 or 1 to PIs to test additional faults

Copyright Agrawal & Bushnell

- 27 -BF - ES

Example

t1 = 0 1 X t2 = 0 X 1
t3 = 0 X 0 t4 = X 0 1

- 28 -BF - ES

Design for testability

- 29 -BF - ES

Testing finite state machines

Difficult to check states and transitions.

2

1

3A/f

B/cC/d
E/d

For example, verifying the transition from
state 2 to 3 requires

Getting into state 2
Application of A
Check if output is f
Check if we have actually reached 3

Can be simplified by “design for testability”
→ Scan design

For example, verifying the transition from
state 2 to 3 requires

Getting into state 2
Application of A
Check if output is f
Check if we have actually reached 3

Can be simplified by “design for testability”
→ Scan design

- 30 -BF - ES

Scan design

- 31 -BF - ES

Scan design: usage

Verifying a transition requires
• Shifting-in the state to be tested
• Application of the input pattern
• Checking if output is correct
• Shifting-out the successor state

and comparing it.
Essentially reduced to testing
combinatorial logic

Verifying a transition requires
• Shifting-in the state to be tested
• Application of the input pattern
• Checking if output is correct
• Shifting-out the successor state

and comparing it.
Essentially reduced to testing
combinatorial logic

- 32 -BF - ES

JTAG (Boundary scan)

JTAG / IEEE 1149.1 defines a 4-5
wire serial interface to access
complex ICs. Any compatible IC
contains shift registers + an FSM
to execute the JTAG functions.
TDI: test data in; goes into

instruction register or into one of
the data registers.
TDO: test data out
TCK: clock
TMS: controls the state of the test
access port (TAP).
Optional TRST* is reset signal. Source: http://www.jtag.

com/brochure.php

- 33 -BF - ES

Limitations of a single serial scan chain

For chips with a large number of flip-flops,
serial shifts can take a quite long time.
Hence, it becomes necessary to provide
several scan chains.

Trying to avoid serial shifts by generating test
patterns internally and by also storing the results
internally.
Compaction of circuit response in a signature.
Shifting the entire result out becomes obsolete, we
just shift out the signature.

- 34 -BF - ES

Signature analysis

Response of circuit to sequence of test patterns
compacted in a signature. Only this signature is compared
to the golden reference.
In order to exploit an n-bit signature register as good as
possible, we try to use all possible values.
In practice, we use shift-registers with linear feedback:

n-bit shift registerXOR

Response
of circuit to
sequence
of test
vectors Signature

Using proper feedback bits, all possible values for the
register can be generated.
Using proper feedback bits, all possible values for the
register can be generated.

- 35 -BF - ES

Example: 4-bit signature generator

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

11111001

0010

0011

0111

1011

0110

All 16 possible
signatures are
generated!

All 16 possible
signatures are
generated!

Source: P.K.Lala: Fault tolerant & fault
testable hardware design, Prentice Hall, 1985

0

1

0

1

- 36 -BF - ES

Aliasing for signatures

Consider aliasing for some current pattern
An n-bit signature generator can generate 2n signatures.
For an m-bit input sequence, the best that we can get is to evenly
map 2(m-n) patterns to the same signature.
Hence, there are 2(m-n)-1 sequences that map to the same signature
as the pattern currently considered.
In total, there are 2m-1 sequences different from the current one.

signatures to patterns mapevenly wethat provided for
2
1

12
12

patterns other of number total
signature same to map patterns otheryProbabilit

)(

nmP

P

n

m

nm

>>=

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

- 37 -BF - ES

Replacing serially shifted test pattern
by pseudo-random test patterns

Shifting in test patterns can be avoided if we generate (more
or less) all possible test patterns internally with a pseudo-
random test pattern generator.

DUTPseudo-
random
test pattern
generator

Signature
analysis
register

Effect of pseudo random numbers on coverage to be analyzed.
Signature analysis register shifted-out at the end of the test.

Effect of pseudo random numbers on coverage to be analyzed.
Signature analysis register shifted-out at the end of the test.

Compare
with
reference

Comparison possible because test pattern generator is a deterministic source!

- 38 -BF - ES

Pseudo random test pattern generation

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

11111001

0010

0011

0111

1011

0110

2n-1 patterns generated!2n-1 patterns generated!

Linear feedback shift
register (LFSR)

- 39 -BF - ES

Model-based testing

- 40 -BF - ES

Model-based testing: model as “golden device”

Test
cases
(input
vectors)

stimuli response

Device
under
test

Beha-
vioral
model

e.g. Stateflow+
Simulink

e.g. SW comp.,
ECU

Compa-
rison

Result
report

- 41 -BF - ES

Model-based testing:
model-based test vector generation

Test
cases
(input
vectors)

Test goals

Desired behavior

Coverage
criteria

Beha-
vioral
model

e.g. Stateflow+
Simulink

Gene-
ration

Main operation is search of computation paths in the
model which lead to states with certain properties.

- 42 -BF - ES

Breadth-first search (BFS)

- hard depth limit (#states
generated exponential in
depth)

- finds all fulfilling states
within depth limit

- cannot find fulfilling states
with path length longer than
depth limit

(Copyright this and next slide: M. Lettrari, MbEES 05/06)

- 43 -BF - ES

Heuristic search

- uses a heuristic function h
for computing value h(s)

- h(s) approximates the real
distance from s to a p-fulfilling
state s‘

- Heuristic search can be
combined with BFS

- if h is a good approximation
of real distance, heuristic
search can find fulfilling states
with very long path length

- 44 -BF - ES

Fault Injection

- 45 -BF - ES

Fault injection

Fault simulation may be too time-consuming
If real systems are available, faults can be injected.

Two types of fault injection:
1. local faults within the system, and
2. faults in the environment (behaviors which do not

correspond to the specification).
For example, we can check how the system behaves if
it is operated outside the specified temperature or
radiation ranges.

- 46 -BF - ES

Fault injection

Intentional activation of faults by HW or/and SW means
Establish faults in a predictable and reproducible way
Trigger error-handling routines

Two purposes:
Testing and Debugging

• During normal operation faults are rare events
• May be much too rare to achieve meaningful data from std.

testing
Dependability Forecasting

• Used for deriving data about the likely dependability of the
system

• Need to know the types and frequencies of different faults in
the intended operational environment

- 47 -BF - ES

Software Fault Injection

Errors are seeded into memory by software
Mimic errors originating in hardware faults by software
Either randomly or in specific location to provoke specific fault-
management routine

Advantages over physical fault injection include
Predictability and reproducibility: fault injection is independent of
uncontrollable or statistical effects
Reachability of inner registers in VLSI chips
Simplicity of experiments: can be carried out with software tools

Coverage similar to physical fault injection, if well-done
Statistical data gathered from physical injection experiments can be used
to trim software fault injection

- 48 -BF - ES

Typical forms of SW fault injection

Random bit flips in memory
Simulates adverse operational conditions corrupting memory

Boolean masking of words written to (some) memory
Discard some message(s)

Simulates imperfect communication media

Adding messages
Simulates presence of a babbling idiot
Checks consequences of certain fault tolerance mechanisms (resend…)
if used when transient fault condition was no longer present (very hard to
test by HW fault injection)

Delaying messages / result delivery
…and many more

