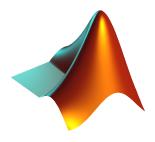
Embedded Systems MATLAB Tutorial

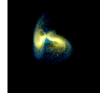

Hans-Jörg Peter

October 28th, 2008

Assignments and Tutorials

- Assignments
 - Handout / return: Thursdays (before the lecture)
 - Teams are allowed (at most 3 students / team)
 - Box will be available
- First assignment
 - Handout: Today afternoon, online available
 - Return: By Monday, 8:00
- Tutorials
 - Monday, 16:00 18:00, SR 015 / E1.3
 - Wednesday, 14:00 16:00, SR 5 (215) / E2.4
 - Friday, 10:00 12:00, SR 015 / E1.3

MATLAB - Matrix Laboratory

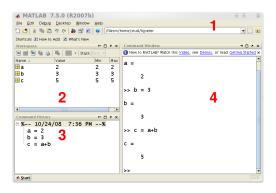

- Produced by The Mathworks
- Used for simulation and numerical computation
- No (Maple-like) symbolical solving
- Standard tool for developing embedded systems

MATLAB Structure

- MATLAB core: IDE for the MATLAB language
- Simulink: Graphical environment for continuous simulation
- Stateflow: Statecharts for Simulink
- Many other add-ons available...

Numerical Computing

- Some problems cannot be solved precisely
- Approximative numerical solutions
- Simulation of the physical world


Starting MATLAB

- http://sunray1.studcs.uni-sb.de
- 2 Log in
- Olick on MatLab

alternatively:

- **1** Log onto a cip, bio, or sunray workstation
- 3 ssh -Y appsrv{1,2}.studcs.uni-sb.de
- Execute /usr/local/matlab/bin/matlab

MATLAB IDE

- Current directory
- Workspace
- Command history
- Command window

The MATLAB Language

- Simplified C-like syntax
- Case sensitive
- Interactive shell: command window
- User defined functions: m-files
- Many built-in commands:
 - lookfor <keyword>
 - help <function>
 - sprintf (<format str>, v1, v2, ...)
 - disp (<object>)
 - plot (Y)
 - plot (X, Y)
 - . . .

Variables

- Each numerical variable is a matrix
- Scalars = 1×1 matrices
- No explicit declarations / dynamic typing
- Polymorphism
- Removing variables:
 - clear <variable>
 - clear

Working with Matrices

```
\bullet a = 4
\bullet b = [4 8 15; 16 23 42; 1 2 3]
\circ c = b'
\bullet d = 0:10
• e = 0:0.01:2*pi
\bullet f = ones(4)
\bullet h = b*b
\bullet i = b.*b
```

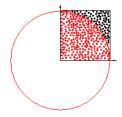
Script Files

- So called m-files
- Must be located in
 - the current directory or
 - the global search path
- Can be executed from the command window
- Can also define functions

Control Structures

Conditional

```
if <cond>
    <statements>
[else
     <statements>]
end
```


While loop

```
while <cond>
    <statements>
end
```

For loop

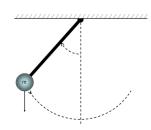
```
for v = <from>:[<step>:]<to>
     <statements>
end
```

Example: Computing π

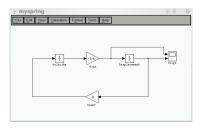


 \bullet Monte Carlo method for computing π

$$\frac{\text{points inside}}{\text{points total}} \approx \frac{\pi}{4}$$

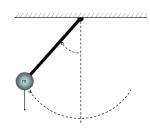

Simulink

Harmonic Oscillator



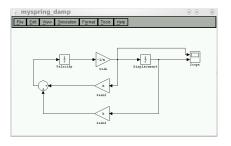
- m = mass constant
- k = spring constant
- y_0 = initial displacement
- y = current displacement
- $v = \dot{y} = \text{current velocity}$

$$m\ddot{y} + ky = 0$$


$$\Leftrightarrow m\dot{v} + ky = 0$$

Harmonic Oscillator in Simulink

Damped Harmonic Oscillator


- m = mass constant
- R = damper constant
- k = spring constant
- y_0 = initial displacement
- y = current displacement
- $v = \dot{y} = \text{current velocity}$

$$m\ddot{y} + R\dot{y} + ky = 0$$

$$\Leftrightarrow m\dot{v} + Rv + ky = 0$$

$$\Leftrightarrow m\dot{v} + Rv + ky = 0$$

Damped Harmonic Oscillator in Simulink

Stateflow

Semantics: Statemate vs. Stateflow

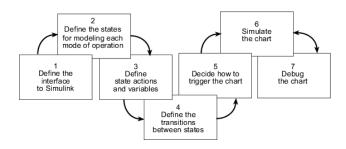
Standard (Statemate)

- Any finite number of active events.
- Emitted events are collected and then passed to the entire chart.

Stateflow

- At most one active event.
- Emitted events are immediately passed to the receiver.

Semantics: Statemate vs. Stateflow (2)


Standard (Statemate)

- Non-determinism is allowed.
- Synchronous execution of AND-states.
- Variable changes at the end of the step.

Stateflow

- Non-determinism is not allowed.
- Sequential execution of AND-states.
- Immediate variable changes.

Stateflow Development

