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Petri nets
Introduced in 1962 by Carl Adam Petri in his PhD thesis.

Different “Types” of Petri nets known

Condition/event nets
Place/transition nets
Predicate/transition nets
Hierachical Petri nets, …
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(other) application areas:
automation engineering
business processes

Focus on modeling causal dependencies;
no global synchronization assumed (message passing only).

Used for Modelling, Analysis, Verification 
of Distributed Systems
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Example 1: The four seasons
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Conditions
Either met or not met. Conditions represent “local states”. Set of 
conditions describes the potential state space.
Events
May take place if certain conditions are met. Event represents a state 
transition.
Flow relation
Relates conditions and events, describes how an event changes the 
local and global state.
Tokens
Assignments of tokens to conditions specifies a global state.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

Key Elements
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Example 2: 
Synchronization at single track rail segment

„Preconditions“
of x fulfilled

mutual exclusion: 
there is at most one train using the track rail

x
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Playing the „token game“: dynamic behavior

x
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Playing the „token game“: dynamic behavior

„Postcondition“
of x fulfilled

x
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Playing the „token game“: dynamic behavior
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Conflict for resource „track“:
two trains competing
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Petri Nets

Def.: N=(C,E,F) is called a Petri net, iff the following holds
1. C and E are disjoint sets
2. F ⊆ (C × E) ∪ (E × C); is binary relation, („flow relation“)

Def.: Let N be a net and let x ∈ (C ∪ E).
•x := {y | y F x} is called the set of preconditions.
x• := {y | x F y} is called the set of postconditions.

Example:

x•x x•
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Boolean marking 
and computing changes of markings

A Boolean marking is a mapping  M: C → { 0,1 }.
„Firing“ events x generate new markings on each of the conditions c
according to the following rules:
a transition at x can be fired, iff •x, i.e. all preconditions of x are 
marked and x• is not marked, after firing •x is unmarked and x• is 
marked
M    M’, iff M’ results from M by firing exactly one transition



7

- 13 -BF - ES

Competing Trains Example:
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Competing Trains Example: 
Conflict for resource „track“
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Competing Trains Example: Boolean marking 
and computing changes of markings

Competing Trains example
Consider the mapping  sym: C → C
with sym(c)=-c for all c=0,1,2,3,-1,-2,-3
We call two markings M1, M1s symmetric,
iff M1 can be transformed to M1s by changing the marks from  a node
c to node -c , i.e M1s(sym(c)):= M1(c).
It follows easily: M1   M2  iff M1s     M2s

0

1

-2-3

32

-1
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

Split 1.1

Split 4.1

M1 M2 M3

M4 M5 M6

Split 5.1
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

Split 6.1

M6 M1
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

Split 6.2

M2sM6 M7
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

M5 M6s

Split 5.2
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

Split 4.2

M4 M8 M6
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Competing Trains Example: Boolean marking and 
computing changes of markings
Reachable markings

Split 1.2

M1 M2s
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M1
M2 M3 M4

M8

M5
M6

M7

M3s M4s

M8s

M5s
M6s

M7s
M2s

Competing Trains Example: Boolean marking 
and computing changes of markings
Reachable markings
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Basic structural properties: 
Loops and pure nets

Def.: Let (c,e) ∈ C × E.  (c,e) is called a loop iff cFe ∧ eFc.

Def.: Net N=(C,E,F) is called pure, if F does not contain any 
loops.
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Structural properties: Simple nets

Def.: A net is called simple, iff
[x,y ∈ (C ∪ E) ∧ ( •x = •y ) ∧ (x• = y• )]  → x = y

Example (not a simple net):
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Condition/event nets (C/E nets)

Def.:
A Petri net N=(C,E,F) together with a set of
Markings M is called condition/event net (C/E net), iff

N is simple and has no isolated elements
M is closed w.r.t. “firing” and “inverse firing”
two markings in M can be transformed into each 
other by “firing” and “inverse firing”
for each event e ∈ E, there exists a marking in M, 
that allows firing at e
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Competing Trains Example is C/E net:

M1
M2 M3 M4

M8

M5
M6

M7

M3s M4s

M8s

M5s
M6s

M7s
M2s
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Properties of C/E

Def.: 
Marking M’ is reachable from marking M, iff there 
exists sequence of firing steps transforming M into M’
(Not.: M M’)
A C/E net is cyclic, iff any two markings are 
reachable from each other.
A C/E net fulfills liveness, iff for each marking M and 
for each event e there exists a reachable marking M’
that activates e for firing
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Expressiveness: basic examples

concurrency of 
transitions

alternative or
conflict

synchronization
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s

Example Thalys
trains:
more complex

Thalys trains 
between Cologne, 
Amsterdam, 
Brussels and Paris.
Synchronization at 
Brussels and Paris

Thalys trains 
between Cologne, 
Amsterdam, 
Brussels and Paris.
Synchronization at 
Brussels and Paris
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Realistic scenarios need more general 
definitions

More than one token per condition, capacities of places
weights of edges
state space of Petri nets may become infinite!

ready
p1

t1
produce

idle

send

p2

t2

k=1

k=1

k=5

Storage p3

3 2 t3 t4

p4

p5

k=2

k=2

accept

accepted

consume

ready

Producer Consumers
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Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff
1. N=(P,T,F) is a net with places p ∈ P and transitions t ∈ T
2. K: P → (N0 ∪ {ω}) \{0} denotes the capacity of places

(ω symbolizes infinite capacity)
3. W: F →(N0 \{0}) denotes the weight of graph edges
4. M0: P → N0 ∪{ω} represents the initial marking of places

W

M0

(Segment of some net)

defaults:
K = ω
W = 1

defaults:
K = ω
W = 1
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Computing changes of markings

„Firing“ transitions t generate new markings on each of 
the places p according to the following rules:
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Activated transitions
Transition t is „activated“
iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).
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Shorthand for changes of markings
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⇒ ∀p ∈ P:  M´(p) = M(p)+ t(p)

Firing
transition:

+: vector add⇒ M´ = M+ t
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Matrix N describing all changes of markings

Def.: Matrix N of net N is a mapping

N: P ×T → Z (integers)

such that ∀ t ∈T:  N(p,t)=t(p)

Component in column t and row p indicates the change of 
the marking of place p if transition t takes place.
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Example: N =

s
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Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under transitions,
•e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains 
constant

Important for correctness proofs, e.g. the proof of 
liveness

- 38 -BF - ES

Competing Trains Example:
Place Invariant 2,0,-2

2

0

-2


